
STAT 479: Study Guide for Exam

Exam will be 6 questions, taken from the following question bank:

My Favorite HW Questions

1. From HW1: Deriving Backpropagation from MLE

Consider a neural network with one hidden layer. The network’s output is given by:

ŷ = σ(w2 · h),

where:

• h = σ(w1 · x),
• σ(z) is the sigmoid activation function defined as σ(z) = 1

1+e−z ,

• w1 and w2 are weights,

• x is the input.

Assume that the training data (x, y) are drawn i.i.d. from a distribution, and the
network is trained using Maximum Likelihood Estimation (MLE). For binary classi-
fication, the likelihood is given by:

P (y|x,w1, w2) = ŷy(1− ŷ)1−y,

where ŷ is the predicted probability for the positive class.

(a) What is the negative log-likelihood L? You may leave ŷ unexpanded here.

(b) What is the gradient of L with respect to w2?
Hint: The derivative of the sigmoid function is:

σ′(z) = σ(z)(1− σ(z)).

(c) What is the gradient of L with respect to w1?

(d) Bonus: The gradient computations you derived for w1 and w2 can be directly
applied across all training examples in a mini-batch of size n.

1. 5 points: Express the gradient updates for w1 and w2 in matrix form,
assuming that the input batch is represented as a matrix X of shape (n, d)
and output Y of shape (n, 1).

2. 5 points: Explain why this matrix formulation is computationally more
efficient than computing gradients individually for each training example.
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2. From HW2: MLE for Gaussian Naive Bayes
Naive Bayes assumes that features X = (X1, X2, . . . , Xd) are conditionally indepen-
dent given the class Y , and that Xi|Y ∼ N (µi,Y , σ

2
i,Y ), i.e.

P (X|Y ) =
d∏

i=1

P (Xi|Y ),

P (Xi|Y = k) =
1√

2πσ2
i,k

exp

(
−(Xi − µi,k)

2

2σ2
i,k

)
.

(a) Likelihood Function: Write the likelihood of the observed data {Xi,j}j:Yj=k,
assuming Xi|Y = k is Gaussian. Select the correct expression:

A.
∏

j:Yj=k

∏d
i=1 P (Xi,j|Y = k)

B.
∏

j:Yj=k

∏d
i=1

1
2πσ2

i,k
exp

(
− (Xi,j−µi,k)

2

σ2
i,k

)
C.
∏

j:Yj=k

∏d
i=1

1√
2πσ2

i,k

exp
(
− (Xi,j−µi,k)

2

2σ2
i,k

)
D.
∏

j:Yj=k

∏d
i=1 P (Y = k) · P (Xi,j)

(b) Log-Likelihood: Write the log-likelihood for µi,k and σ2
i,k. For notation con-

venience, let Nk be the number of samples with label k: Nk =
∑n

j=1 I(Yj = k) .
Select the correct expression:

A. −Nk

2
log(2πσ2

i,k)− 1
2σ2

i,k

∑
j:Yj=k(Xi,j − µi,k)

2

B. −1
2
log(2πσ2

i,k)− 1
σ2
i,k

∑
j:Yj=k(Xi,j − µi,k)

2

C.
∑

j:Yj=k logP (Xi,j|Y = k) + logP (Y = k)

D. −Nk

2
log(2π) +

∑
j:Yj=k(Xi,j−µi,k)

2

2σ2
i,k

(c) MLE for µi,k: Derive the MLE for µi,k. Select the correct estimator:

A. µ̂i,k =

∑
j:Yj=k Xi,j

Nk

B. µ̂i,k =
∑n

j=1 Xi,j

n

C. µ̂i,k =

∑
j:Yj=k X2

i,j

Nk

D. µ̂i,k =
∑

j:Yj=kXi,j

3. From HW3: MLE for Bayesian Network
Consider a simple Bayesian network A → B with binary variables A,B ∈ {0, 1}
and joint distribution P (A,B) = P (A)P (B|A). You have a complete dataset of n
observations, where na,b denotes the number of times (A = a,B = b) occurs.

Let θ1 = P (A = 1), θ2 = P (B = 1 | A = 0), θ3 = P (B = 1 | A = 1).

(a) Log-Likelihood: Select the correct log-likelihood ℓ(θ1, θ2, θ3):
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A. ℓ(θ1, θ2, θ3) = n0,0 ln(1 − θ1) + n0,1 ln(1 − θ1)θ2 + n1,0 ln θ1(1 − θ3) +
n1,1 ln θ1θ3

B. ℓ(θ1, θ2, θ3) = n0,0 ln[(1−θ1)(1−θ2)]+n0,1 ln[(1−θ1)θ2]+n1,0 ln[θ1(1−
θ3)] + n1,1 ln[θ1θ3]

C. ℓ(θ1, θ2, θ3) = n ln θ1 + n0,1 ln θ2 + n1,1 ln θ3

D. ℓ(θ1, θ2, θ3) = n0,0 ln θ1 + n0,1 ln θ2 + n1,0 ln θ3

(b) MLE for P (B = 1|A = 0): Derive the MLE for P (B = 1|A = 0) by maximizing
the log-likelihood. Select the correct estimator:

A. θ̂2,MLE = n0,1

n0,0+n0,1

B. θ̂2,MLE = n0,1

n

C. θ̂2,MLE = n0,0+n0,1

n

D. θ̂2,MLE = n1,1

n1,0+n1,1

4. From HW4: MRFs

Consider a Markov Random Field (MRF) with the following structure:

• Nodes: X1, X2, X3, X4

• Edges: (X1, X2), (X2, X3), (X3, X4), (X4, X1), (X1, X3)

• The joint probability distribution is given by:

P (X1, X2, X3, X4) ∝ exp

 ∑
(i,j)∈E

θijXiXj


(a) Which of the following is a correct factorization of this MRF?

A. P (X1, X2, X3, X4) = ϕ(X1, X2)ϕ(X2, X3)ϕ(X3, X4)ϕ(X4, X1)

B. P (X1, X2, X3, X4) = ϕ(X1, X2, X3)ϕ(X3, X4)

C. P (X1, X2, X3, X4) = ϕ(X1, X2)ϕ(X2, X3)ϕ(X3, X4)ϕ(X4, X1)ϕ(X1, X3)

D. P (X1, X2, X3, X4) = ϕ(X1, X2, X3, X4)

(b) Why is computing the partition function Z difficult for large MRFs?

A. The partition function requires summing over an exponential number
of terms.

B. The partition function depends on the parameters θij, which are un-
known.

C. The partition function does not exist for undirected graphical models.

D. The partition function is always equal to 1.

(c) Removing edge (X1, X3) changes which independence property?

A. X1 ⊥ X3 | {X2, X4}
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B. X1 ⊥ X3 | X2

C. X1 ⊥ X4 | X2

D. X1 ⊥ X2 | X4

(d) A researcher is using Graphical Lasso to learn the structure of a Markov Random
Field (MRF) from data. However, they observe that small changes in the reg-
ularization parameter result in large differences in the learned graph structure,
with many edges appearing or disappearing unpredictably.

Which of the following is the most likely reason for this instability?

A. The sample size is too small relative to the number of variables, leading
to an unstable covariance estimate.

B. The true MRF is not connected, so regularization causes disjoint com-
ponents to form.

C. Graphical Lasso is not a consistent estimator and always leads to
instability.

D. The data is non-Gaussian, violating the assumptions of Graphical
Lasso.

5. From HW5: Deriving EM Updates for a Gaussian Mixture Model (GMM)

A Gaussian Mixture Model assumes that data points are generated from a mixture
of K Gaussian distributions, each with a mean µk, covariance Σk, and a mixing
weight πk. As introduced in class, the Expectation-Maximization (EM) algorithm
iteratively estimates these parameters.

(a) Setting Up the Model

We model the data as being drawn from K Gaussian components:

p(x|θ) =
K∑
k=1

πkN (x|µk,Σk)

where πk are the mixing weights summing to 1, and N (x|µk,Σk) is a Gaussian
density function. Which of the following best describes the latent variables in
the GMM framework?

A. The mixing weights πk that determine the prior probability of each
Gaussian component.

B. The covariance matrices Σk, which control the shape of each Gaussian
distribution.

C. The component assignments zn, which indicate which Gaussian com-
ponent generated each data point.

D. The observed data points xn, which follow a mixture of Gaussians.
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(b) Expectation Step (E-Step)

In the E-step, we compute the posterior responsibility γnk, which represents the
probability that data point xn was generated by component k:

γnk = p(zn = k|xn, θ(t)) =
π
(t)
k N (xn|µ(t)

k ,Σ
(t)
k )∑K

j=1 π
(t)
j N (xn|µ(t)

j ,Σ
(t)
j )

What is the main role of γnk in the EM algorithm?

A. It represents the maximum likelihood estimate of the Gaussian pa-
rameters.

B. It updates the mixing weights to reflect the proportion of data points
assigned to each cluster.

C. It acts as a ”soft” assignment of each data point to the Gaussian
components.

D. It maximizes the log-likelihood function directly.

(c) Maximization Step (M-Step)

In the M-step, we update the parameters of the Gaussians by maximizing the
expected complete-data log-likelihood. The updates are:

π
(t+1)
k =

1

N

N∑
n=1

γnk

µ
(t+1)
k =

∑N
n=1 γnkxn∑N
n=1 γnk

Σ
(t+1)
k =

∑N
n=1 γnk(xn − µ

(t+1)
k )(xn − µ

(t+1)
k )T∑N

n=1 γnk

What does the M-step accomplish?

A. It reassigns each data point to a single Gaussian component.

B. It updates the model parameters to maximize the likelihood given the
current soft assignments.

C. It computes the posterior probability of each data point belonging to
a Gaussian component.

D. It eliminates one Gaussian component per iteration to simplify the
model.

(d) Convergence and Likelihood Maximization

The EM algorithm repeats the E-step and M-step iteratively until convergence,
typically when the log-likelihood:
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log p(X|θ) =
N∑

n=1

log
K∑
k=1

πkN (xn|µk,Σk)

stabilizes.

Which of the following statements is true regarding the convergence properties
of EM?

A. EM always finds the global maximum of the likelihood function.

B. EM maximizes a lower bound on the likelihood at each iteration, en-
suring non-decreasing likelihood.

C. EM can decrease the likelihood in some iterations.

D. EM requires computing second-order derivatives to estimate parame-
ter updates.
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New Potential Questions

1. Conceptual Challenges and Solutions

For each of the following questions, provide a concise explanation (1-2 sentences)
that clearly articulates the fundamental challenge or the corresponding solution.

(a) What is the fundamental challenge of learning parameters in undirected graph-
ical models as compared to learning parameters in a directed graphical model?

(b) What is the fundamental solution that both Iterative Proportional Fitting (IPF)
and Generalized Iterative Scaling (GIS) use?

(c) What is the fundamental challenge of learning parameters when some of the
variable values are not observed (i.e., the GM is only partially-observed)?

(d) What is the fundamental solution that Expectation-Maximization (EM) uses?

(e) Why can an independence-equivalence (I-equivalence) class contain multiple
graphs, and what does this imply for structure learning?

(f) Why is structural regularization often needed when learning general graphical
models, whereas Chow-Liu trees can be learned via likelihood maximization
without additional regularization?

2. Monty Hall as a PGM

The Monty Hall problem is a classic probability puzzle based on a game show sce-
nario. There are three doors, behind one of which is a car, and behind the other two
are goats. A contestant picks a door. Then, the host, Monty Hall, who knows what
is behind each door, always opens a door that the contestant did not pick, revealing
a goat. The contestant is then given the choice to either stay with their initial choice
or switch to the remaining unopened door.

To analyze this using probabilistic graphical models, consider the following ran-
dom variables:

• C ∈ {1, 2, 3}: The door hiding the car (chosen uniformly at random).

• P ∈ {1, 2, 3}: The door initially picked by the contestant (assumed uniform).

• M ∈ {1, 2, 3}: The door Monty opens (determined based on C and P ).

(a) Draw a Bayesian Network (BN) representing the relationships between these
variables. Clearly specify which edges exist in the BN and explain why.

(b) Write the prior probabilities for C and P .

(c) Construct the conditional probability table for P (M |C,P ), ensuring it ac-
counts for Monty’s behavior.

(d) Given that Monty has opened door 2 and the contestant initially picked door
1, compute:
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• P (C = 1 | M = 2, P = 1) (i.e., probability that the car is behind the
originally chosen door).

• P (C = 3 |M = 2, P = 1) (i.e., probability that the car is behind the other
unopened door).

Show your calculations explicitly using Bayes’ Theorem and the conditional
independence properties of the Bayesian Network.

(e) Based on the inferred probabilities, should the contestant switch or stay to
maximize their chance of winning the car? Justify your answer using proba-
bilistic reasoning derived from your Bayesian network.

3. Bayesian Network Theory

State TRUE or FALSE for each of the following questions. In parts (f)-(g), P is a
distribution,G is a BN structure, and I is an independence set.

(a) For all strictly positive joint distributions of A,B,C, if A ⊥ B | C and A ⊥
C | B, then A ⊥ B and A ⊥ C.

A B C

D E

Figure 1: A Bayesian network.

(b) In Figure 1, E ⊥ C | B.

(c) In Figure 1, A ⊥ E | C.
(d) The BN structure in Figure 1 could be used to learn a distribution that matches

P (A,B,C,D,E) = P (A)P (B | A)P (C | B)

by appropriately setting its parameters.

(e) If a BN is converted to an undirected Markov Random Field (MRF) with the
same node/edge skeleton, could the set of distributions that factorize according
to the graph ever be smaller?

(f) If distribution P factorizes over graph G, then I(G) ⊆ I(P ).
(g) If G is an I-map for P , then P may have extra conditional independencies than

G.

4. Approximate Inference Theory Let’s compare Variational Inference (VI) with
Markov Chain Monte Carlo (MCMC), the two most popular methods for approxi-
mate inference. Below is a list of algorithmic properties or problem settings. For
each item, link to either VI or MCMC (you only need to write VI or MCMC).
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(a) Inference results are generally closer to target distributions.

(b) Non-parametric.

(c) Amenable to batched computation using GPUs.

(d) Transform inference into optimization problems.

(e) Easier to integrate with back-propagation.

(f) Involves more stochasticity.

(g) Easier to set the termination condition for the computational loop.

(h) Higher variance under limited computational resources.

(i) Problem case: Estimating a topic model with online streaming text data.

(j) Problem case: Estimating a topic model from a very small text corpus.

5. Linear-chain CRF

Part-of-speech (POS) tagging is a supervised learning problem with sequential in-
puts and sequential outputs. Instead of using a Hidden Markov Model (HMM), a
generative model, we can directly model the conditional distribution P(y | x) using
the following form:

P(y | x) = 1

Z(x)

T∏
t=1

Ψt(yt, yt−1,x), (1)

where Ψt(yt, yt−1,x) is a non-negative potential function that depends on a pair of
tags yt, yt−1 and a sequence of words x, and Z(x) is the normalizing constant.

(a) Connecting HMMs to CRFs Show that the conditional distribution P(y | x)
of an HMM can be written as a special case of a linear-chain CRF. Specifically,
write down the complete likelihood for an HMM and express it in a log-linear
form similar to Equation (1).

(b) Feature Engineering in CRFs A key advantage of CRFs over HMMs is the
ability to incorporate rich, overlapping features. Define a **log-linear** model
for the potential function Ψt(yt, yt−1,x) using the following features:

1. identity of the given word, xt, and the current tag, yt,

2. identity of the previous word, xt−1, and the current tag, yt,

3. identity of the next word, xt+1, and the current tag, yt,

4. identity for whether xt contains a capital letter, and the current tag, yt,

5. identity of the previous tag, yt−1, and the current tag, yt.

Explicitly define the feature functions fk(yt, yt−1,x) and express the potential
function Ψt(yt, yt−1,x) in terms of these feature functions and their correspond-
ing weights.
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(c) Maximum Likelihood Learning in CRFs Derive the log-likelihood func-
tion for your linear-chain CRF and outline the steps for parameter estimation
using gradient-based optimization. Briefly discuss the computational challenges
involved in computing gradients and normalizing constants.

Assume x are binary vectors. In other words, pθ(x | z) can be modeled with a
sigmoid belief net, so the likelihood is of the form pθ(x|z) = Bernoulli(fθ(z)).
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Unused Questions from Quiz Study Guide
1. MLE for Exponential Distribution

Suppose we observe data x1, x2, . . . , xn drawn from an exponential distribution
with PDF:

f(x;λ) = λe−λx, x ≥ 0.

(a) Log-Likelihood Function: Which of the following correctly represents the
log-likelihood function ℓ(λ) for this dataset?

A. ℓ(λ) = n log λ− λ
∑n

i=1 xi
B. ℓ(λ) = n log λ+ λ

∑n
i=1 xi

C. ℓ(λ) = n log λ− λ
∏n

i=1 xi
D. ℓ(λ) = nλ− λ

∑n
i=1 xi

(b) Gradient of the Log-Likelihood: What is the gradient of the log-likelihood
ℓ(λ) with respect to λ?

A. ∂ℓ
∂λ

= n
λ
−
∑n

i=1 xi
B. ∂ℓ

∂λ
= n

λ
+
∑n

i=1 xi
C. ∂ℓ

∂λ
= nλ−

∑n
i=1 xi

D. ∂ℓ
∂λ

= λ
∏n

i=1 xi
(c) MLE for λ: Which of the following is the Maximum Likelihood Estimator

(MLE) for λ?
A. λ̂ = n∑n

i=1 xi

B. λ̂ =
∑n

i=1 xi

n

C. λ̂ = n∏n
i=1 xi

D. λ̂ = 1∑n
i=1 xi

2. Conditional vs Joint Models

Let’s consider two different probabilistic models for a categorical outcome Y
given feature variables X = (X1, X2, . . . , Xn).

Model 1 (Conditional Model) The probability of Y given X is modeled as:

P (Y = k|X) =
exp(θTkX)∑
j exp(θ

T
j X)

Model 2 (Joint Model) A joint probability distribution over (Y,X) is defined
using an unnormalized score:

P (Y,X) =
ψ(Y,X)

Z
, where ψ(Y,X) = exp(θTYX)

and Z is the normalization constant.
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(a) Derive an explicit expression for Z in Model 2.

(b) Express P (Y |X) in Model 2.

(c) Show that Model 1 can be derived from Model 2 by choosing an appropriate
form of Z.

3. Identifying Cliques and Matching to Data Distributions Consider the fol-
lowing undirected probabilistic graphical model, where nodes represent random
variables, and edges represent direct dependencies between variables:

A B C

D E

(a) Identify all maximal cliques in this graph. Write in the form (x, y, z) if
nodes x, y, z are a maximal clique.

(b) Below is a conditional probability table (CPT) describing joint probabilities
of some of the variables:

B C P (B|C) P (C)
0 0 0.7 0.5
0 1 0.4 0.5
1 0 0.3 0.5
1 1 0.6 0.5

B C E P (E|B,C,D)
0 0 0 0.8
0 0 1 0.2
0 1 0 0.5
0 1 1 0.5
1 0 0 0.4
1 0 1 0.6
1 1 0 0.1
1 1 1 0.9

Table 1: Conditional probability table for E.

Determine whether these conditional probability tables are consistent with
the graphical model. Specifically:

(i) Does the factorization implied by the CPTs respect the independence
assumptions of the graph?
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(ii) If the tables do not match the graph, identify where the discrepancies
occur and which independence assumptions are violated.

4. Backpropagation with ℓ2-Regularization

Consider a neural network with one hidden layer. The network’s output is:

ŷ = σ(w2 · h),

where:

• h = σ(w1 · x),
• σ(z) is the sigmoid activation function defined as σ(z) = 1

1+e−z ,

• w1 and w2 are weight vectors,

• x is the input.

The network is trained using an ℓ2-regularized loss function:

Lreg = L+
λ

2

(
∥w1∥22 + ∥w2∥22

)
,

where L is the negative log-likelihood for binary classification:

L = −y log ŷ − (1− y) log(1− ŷ),

and λ > 0 is the regularization strength.

(a) Gradient of Lreg w.r.t. w2: Derive the total gradient of Lreg with respect
to w2. Select the correct expression:

A. (ŷ − y) · h+ λw2

B. (ŷ − y) · h− λw2

C. (ŷ − y) · h
D. (ŷ − y) + λw2

(b) Gradient of Lreg w.r.t. w1: Derive the total gradient of Lreg with respect
to w1. Select the correct expression:

A. (ŷ − y) · w2 · σ′(w1 · x) · x+ λw1

B. (ŷ − y) · σ′(w1 · x) · x+ λw1

C. (ŷ − y) · w2 · σ′(w1 · x) · x
D. (ŷ − y) · σ′(x) · w2 + λw1

(c) Impact of Regularization: Suppose the regularization term is removed
(λ = 0). Which of the following best describes the impact on the optimiza-
tion process?

A. The model will fit the training data more closely, potentially over-
fitting.

B. The model will have higher training error but better generalization.
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C. The gradients with respect to w1 and w2 will increase in magnitude.

D. The optimization will converge more slowly.

(d) Regularization Strength: If λ is increased, what effect will this have on
the learned weights w1 and w2?

A. The weights will shrink, reducing overfitting.

B. The weights will increase, fitting the training data better.

C. The weights will remain unchanged, as λ does not affect the opti-
mization.

D. The weights will oscillate during training.

5. Deriving the Structure and Properties of a Restricted Boltzmann Ma-
chine

Consider a probabilistic model with two types of binary random variables:

• Visible variables V = {V1, . . . , Vn}, which represent observed data.

• Hidden variables H = {H1, . . . , Hm}, which encode dependencies between
visible variables.

After analyzing the model, you determine the following structural properties:

1. Each visible variable Vi is connected to some hidden variables Hj.

2. Each hidden variable Hj is connected to some visible variables Vi.

3. No direct connections exist between visible variables.

4. No direct connections exist between hidden variables.

5. The joint probability distribution is defined using an energy function,
rather than conditional probabilities.

(a) Graphical Model Structure: Given the properties above, which of the
following best describes the structure of this model?

A. A directed graphical model (Bayesian network) where each hidden
node is a parent of multiple visible nodes.

B. A fully connected undirected graphical model, where every variable
(visible or hidden) is connected to every other variable.

C. A bipartite undirected graphical model, where edges exist only
between visible and hidden nodes, and no edges exist within either
group.

D. A Markov random field with local cliques, where visible variables
are conditionally independent given their neighbors.

(b) Marginal Probability of Visible Units: The joint probability of visible
and hidden units is given by the Boltzmann distribution:

P (V,H) =
1

Z
e−E(V,H)
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where the energy function takes the form:

E(V,H) = −
∑
i

biVi −
∑
j

cjHj −
∑
i,j

WijViHj.

Which of the following correctly expresses the marginal probability P (V )
after summing over all hidden variables?

A. P (V ) =
∑

H P (V,H), summing out hidden variables explicitly.

B. P (V ) ∝ e
∑

i biVi , ignoring the hidden units.

C. P (V ) ∝
∏

j

(
1 + ecj+

∑
i WijVi

)
e
∑

i biVi .

D. P (V ) ∝ e−
∑

i,j WijViHj , treating the energy function as directly
defining probabilities.

(c) Role of Hidden Units: Why do RBMs allow visible units to have sta-
tistical dependencies, even though there are no direct connections between
them?

A. The hidden units introduce shared dependencies, making visible
units conditionally dependent even though they are condi-
tionally independent given H.

B. The visible units are always independent, since there are no direct
edges between them.

C. The bipartite structure forces visible units to be independent both
marginally and conditionally, meaning RBMs can only model
very simple distributions.

D. The energy function forces every visible unit to depend only on
itself, meaning hidden units have no real effect.
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