STAT 479: Homework 1

Due: 11:59PM January 31, 2025 by Canvas

Part 1: Probability Basics

1. Conditional Probabilities

Suppose we roll two standard six-sided dice. Let A be the event "the sum is greater than 7," and B be the event "the first die shows a 4." Select the correct answers for the following probabilities:

(a)
$$P(A)$$
:
A. $\frac{5}{12}$
B. $\frac{7}{12}$
C. $\frac{1}{6}$
D. $\frac{1}{2}$
(b) $P(A \cap B)$:
A. $\frac{1}{6}$
B. $\frac{1}{12}$
C. $\frac{5}{36}$
D. $\frac{1}{4}$
(c) $P(A|B)$:
A. $\frac{1}{3}$
B. $\frac{5}{12}$
C. $\frac{2}{3}$
D. $\frac{1}{2}$
(d) Are A and B independent?
A. Yes, $P(A \cap B) = P(A) \cdot P(B)$.
B. No, $P(A \cap B) \neq P(A) \cdot P(B)$.

Answer: Write your solution here. For multiple choice questions, only the letter answer is required.

(a)

(b)

(10 points)

(c)			
(d)			

2. Bayes' Rule

(10 points)

A medical test for a rare disease has the following properties, where T is the test and D is the disease:

- $P(T^+|D) = 0.95$,
- $P(T^+|\neg D) = 0.02,$
- P(D) = 0.001.

(a) Using Bayes' rule, compute $P(D|T^+)$. Select the correct answer:

- $A. \ 0.32$
- B. 0.047
- C. 0.019
- D. 0.001
- (b) At what P(D) would the test give 95% confidence?
 - A. 0.10
 - B. 0.20
 - C. 0.30
 - D. 0.50

Answer:(a)
(b)

3. Continuous Random Variables

(10 points)

The probability density function (PDF) of a continuous random variable X is:

$$f(x) = \begin{cases} 2x & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Is f(x) a valid PDF? Select the correct answer: A. Yes, $\int_{-\infty}^{\infty} f(x) dx = 1$.

- B. No, f(x) does not integrate to 1.
- (b) Compute $P(0.25 \le X \le 0.75)$. Select the correct answer:
 - A. 0.25
 - B. 0.50
 - C. 0.75
 - D. 1.00
- (c) Determine the expected value E[X]. Select the correct answer:
 - A. 0.25
 - B. 0.33
 - C. 0.50
 - D. 0.67
- (d) Determine the variance of X. Select the correct answer:
 - A. 0.056
 - B. 0.111
 - C. 0.167
 - D. 0.222

Answer: (a) (b) (c) (d)

4. Joint and Marginal Probabilities

(10 points)

Two random variables X and Y have the following joint probability mass function (PMF):

$$P(X = x, Y = y) = \begin{cases} \frac{x+y}{12}, & x, y \in \{1, 2\}, \\ 0, & \text{otherwise.} \end{cases}$$

(a) Which property must hold for P(X, Y) to be a valid joint PMF?

- A. $P(X = x, Y = y) \ge 0$ for all x, y. B. $\sum_{x} \sum_{y} P(X = x, Y = y) = 1$.
- C. Both (A) and (B).

- D. None of the above.
- (b) Compute the marginal probability P(X = 1).
 - A. 0.32
 - B. 0.35
 - $C. \ 0.42$
 - D. 0.45
- (c) Compute the conditional probability P(Y = 2 | X = 2).
 - $A. \ 0.45$
 - B. 0.50
 - C. 0.57
 - D. 0.65

Answer:

- (a)
- (b)
- (c)

Part 2: Estimation

5. MLE and MAP for a Possibly Biased Coin

Suppose you are flipping a coin that might be biased (i.e., the probability of heads θ is unknown and not necessarily 0.5). You flip the coin n times and observe k heads.

(a) Using the Bernoulli likelihood function, what is the Maximum Likelihood Estimate (MLE) for θ ?

A. $\frac{n}{k}$ B. $\frac{k}{n}$ C. $k \cdot n$ D. $1 - \frac{k}{n}$

(b) Suppose you have prior knowledge that the coin is likely close to fair, modeled using a Beta prior $\theta \sim \text{Beta}(\alpha, \beta)$. The posterior distribution is:

Posterior(
$$\theta$$
|data) $\propto \theta^{k+\alpha-1}(1-\theta)^{n-k+\beta-1}$.

What is the MAP estimate for θ ?

A.
$$\frac{k}{n}$$

B. $\frac{k+\alpha-1}{n+\alpha+\beta-2}$
C. $\frac{k}{n+\alpha+\beta}$
D. $\frac{k+\alpha}{n+\beta}$

Answer:

(a)

(b)

6. Poisson Distribution

The Poisson distribution models the probability of observing a count x_i with the rate parameter λ :

$$P(x_i|\lambda) = \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}.$$

- (a) Which of the following represents the likelihood function $L(\lambda)$ for a single observation x_1 ?
 - A. $\frac{\lambda^{x_1}e^{-\lambda}}{x_1!}$ B. $\lambda x_1 e^{-\lambda}$

(10 points)

(10 points)

- C. $\lambda^{x_1-1}e^{-\lambda}$ D. λe^{-x_1}
- (b) Which of the following represents the likelihood function $L(\lambda)$ for *n* independent observations x_1, x_2, \ldots, x_n ?
 - A. $\prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$ B. $\prod_{i=1}^{n} \lambda x_i e^{-\lambda}$ C. $\sum_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$ D. $\prod_{i=1}^{n} \lambda^{x_i-1} e^{-\lambda}$
- (c) Which of the following represents the log-likelihood function $\log L(\lambda)$?
 - A. $\sum_{i=1}^{n} x_i \log \lambda n\lambda \sum_{i=1}^{n} \log(x_i!)$ B. $n\lambda - \sum_{i=1}^{n} x_i \log \lambda - \sum_{i=1}^{n} \log(x_i!)$ C. $n \log \lambda - n\lambda - \sum_{i=1}^{n} \log(x_i!)$ D. $\sum_{i=1}^{n} x_i \lambda - n\lambda$
- (d) What is the MLE for λ , the rate parameter?

A.
$$\frac{\sum_{i=1}^{n} x_i}{n}$$

B.
$$\sum_{i=1}^{n} x_i$$

C.
$$n \cdot \sum_{i=1}^{n} x_i$$

D.
$$\frac{n}{\sum_{i=1}^{n} x_i}$$

Answer:

(a)

- (b)
- (c)
- (d)

7. Deriving Backpropagation from MLE

(10 points)

Consider a neural network with one hidden layer. The network's output is given by:

$$\hat{y} = \sigma(w_2 \cdot h),$$

where:

- $h = \sigma(w_1 \cdot x),$
- $\sigma(z)$ is the sigmoid activation function defined as $\sigma(z) = \frac{1}{1+e^{-z}}$,

- w_1 and w_2 are weights,
- x is the input.

Assume that the training data (x, y) are drawn i.i.d. from a distribution, and the network is trained using Maximum Likelihood Estimation (MLE). For binary classification, the likelihood of the data is given by:

$$P(y|x, w_1, w_2) = \hat{y}^y (1 - \hat{y})^{1-y},$$

where \hat{y} is the predicted probability for the positive class.

(a) Which of the following represents the negative log-likelihood \mathcal{L} ?

A. $-y \log \hat{y} - (1 - y) \log(1 - \hat{y})$ B. $y \log(1 - \hat{y}) + (1 - y) \log \hat{y}$ C. $\hat{y} \cdot y + (1 - \hat{y}) \cdot (1 - y)$ D. $y \cdot \hat{y} + (1 - y) \cdot (1 - \hat{y})$

- (b) What is the gradient of \mathcal{L} with respect to w_2 ?
 - A. $(\hat{y} y) \cdot h$ B. $(y - \hat{y}) \cdot h$ C. $\hat{y} \cdot (1 - h)$ D. $y \cdot (1 - \hat{y})$
- (c) What is the gradient of \mathcal{L} with respect to w_1 ?
 - A. $(\hat{y} y) \cdot w_2 \cdot \sigma'(w_1 \cdot x) \cdot x$ B. $(\hat{y} - y) \cdot \sigma'(w_1 \cdot x) \cdot x$ C. $(\hat{y} - y) \cdot w_2 \cdot x$ D. $(\hat{y} - y) \cdot \sigma'(x) \cdot w_2$

Answer:

- (a)
- (b)
- (c)