
STAT 479: Homework 2

Due: 11:59PM Feb 11, 2025 by Canvas

Part 1: Naive Bayes

1. MLE for Gaussian Naive Bayes (20 points)

Naive Bayes assumes that features X = (X1, X2, . . . , Xd) are conditionally indepen-
dent given the class Y , and that Xi|Y ∼ N (µi,Y , σ

2
i,Y ).

• Features are conditionally independent given the class:

P (X|Y ) =
d∏

i=1

P (Xi|Y ).

• Each feature Xi|Y = k follows a Gaussian distribution:

P (Xi|Y = k) =
1√

2πσ2
i,k

exp

(
−(Xi − µi,k)

2

2σ2
i,k

)
.

(a) Likelihood Function: Write the likelihood of the observed data {Xi,j}j:Yj=k,
assuming Xi|Y = k is Gaussian. Select the correct expression:

A.
∏

j:Yj=k

∏d
i=1 P (Xi,j|Y = k)

B.
∏

j:Yj=k

∏d
i=1

1
2πσ2

i,k
exp

(
− (Xi,j−µi,k)

2

σ2
i,k

)
C.
∏

j:Yj=k

∏d
i=1

1√
2πσ2

i,k

exp
(
− (Xi,j−µi,k)

2

2σ2
i,k

)
D.
∏

j:Yj=k

∏d
i=1 P (Y = k) · P (Xi,j)

(b) Log-Likelihood: Write the log-likelihood for µi,k and σ2
i,k. For notation con-

venience, let Nk be the number of samples with label k: Nk =
∑n

j=1 I(Yj = k) .
Select the correct expression:

A. −Nk

2
log(2πσ2

i,k)− 1
2σ2

i,k

∑
j:Yj=k(Xi,j − µi,k)

2

B. −1
2
log(2πσ2

i,k)− 1
σ2
i,k

∑
j:Yj=k(Xi,j − µi,k)

2

C.
∑

j:Yj=k logP (Xi,j|Y = k) + logP (Y = k)

D. −Nk

2
log(2π) +

∑
j:Yj=k(Xi,j−µi,k)

2

2σ2
i,k

(c) MLE for µi,k: Derive the MLE for µi,k. Select the correct estimator:
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A. µ̂i,k =

∑
j:Yj=k Xi,j

Nk

B. µ̂i,k =
∑n

j=1 Xi,j

n

C. µ̂i,k =

∑
j:Yj=k X2

i,j

Nk

D. µ̂i,k =
∑

j:Yj=k Xi,j

Answer:

(a)

(b)

(c)

2. Modified Naive Bayes with Feature Dependencies (20 points)

Background: In the standard Naive Bayes classifier, we assume that all features
X1, X2, . . . , Xd are conditionally independent given the class label Y :

P (X1, X2, . . . , Xd | Y ) =
d∏

i=1

P (Xi | Y )

However, in many real-world scenarios, features exhibit dependencies. To address
this, we modify the Naive Bayes model to account for such dependencies. Specifically,
we introduce a structure where some features are conditionally dependent on others.

Problem Statement: Consider a dataset with four features X1, X2, X3, X4 and a
binary class label Y ∈ {0, 1}. Instead of assuming full independence, we impose the
dependency structure captured in the following joint distribution:

P (X1, X2, X3, X4 | Y ) = P (X1 | Y )P (X2, X3 | X1, Y )P (X4 | Y )

Here, P (X2, X3 | X1, Y ) is modeled as a joint Gaussian distribution with mean and
covariance matrix dependent on Y .

Given the probability distributions:

• P (Y = 0) = 0.5, P (Y = 1) = 0.5

• P (X1 | Y ) and P (X4 | Y ) are standard normal univariate Gaussians.

• P (X2, X3 | X1, Y ) follows a multivariate Gaussian distribution:
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– For Y = 0:

µX2,X3 =

[
2
3

]
+ αX1, ΣX2,X3 =

[
1 0.5
0.5 1

]
– For Y = 1:

µX2,X3 =

[
1
−1

]
+ αX1, ΣX2,X3 =

[
1 −0.3

−0.3 1.5

]
(a) Computing P (X | Y )

What is P (X1 = 0, X2 = 2, X3 = 3, X4 = 0 | Y = 0) under this modified Naive
Bayes model?

A. 0.001

B. 0.01

C. 0.03

D. 0.3

(b) Computing P (X, Y )
What is P (X1 = 0, X2 = 2, X3 = 3, X4 = 0, Y = 0) under this modified Naive
Bayes model?

A. 0.001

B. 0.015

C. 0.2

D. 0.5

(c) Model Complexity How many parameters are required to fully parameterize
this modified Naive Bayes model compared to the standard Naive Bayes model?

A. More than standard Naive Bayes – because the dependency
structure introduces additional covariance terms in P (X2, X3 | X1, Y ).

B. Fewer than standard Naive Bayes – because the dependency
structure reduces the total number of independent conditional dis-
tributions.

C. The same as standard Naive Bayes – because each feature still
depends on the class label Y .

D. It depends on the dataset – the number of parameters cannot be
determined without knowing the data distribution.

Answer:

(a)

(b)

(c)
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Part 2: Bayesian Networks

3. Conditional Independence and D-Separation (20 points)

Consider the following Bayesian Network, where A, B, C, and D are random vari-
ables:

A → B → D, A → C → D.

(a) Markov Property: Which of the following statements about conditional in-
dependence in this Bayesian Network is correct?

A. A and D are conditionally independent given B.

B. A and D are conditionally independent given C.

C. B and C are conditionally independent given D.

D. B and C are conditionally independent given A.

(b) Joint Distribution: Which of the following correctly represents the joint prob-
ability P (A,B,C,D)?

A. P (A,B,C,D) = P (A)P (B|A)P (C|A)P (D|B,C)

B. P (A,B,C,D) = P (A)P (B)P (C|A)P (D|B,C)

C. P (A,B,C,D) = P (A)P (B|A)P (C)P (D|B,C)

D. P (A,B,C,D) = P (A|B)P (B|C)P (C|D)P (D)

(c) d-separation: Which of the following pairs of variables are d-separated in the
given network, assuming no evidence is observed?

A. A and D

B. B and C

C. A and C

D. None of the above

E. All of the above

(d) d-separation: Which of the following pairs of variables are d-separated in the
given network, assuming B is observed?

A. A and D

B. B and C

C. A and C

D. None of the above

E. All of the above

(e) D-Separation and Deep Generative Models: Suppose a deep generative
model learns latent variables Z that mediate dependencies between observed
variables. Which of the following statements is true?
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(a) If Z explains the correlation between X and Y , then conditioning on Z
should make X and Y independent.

(b) Adding a latent variable always increases dependencies between observed
variables.

(c) If Z is a common parent ofX and Y , thenX and Y are always independent.

(d) If Z is observed, it has no effect on the conditional independence structure
of X and Y .

Answer:

(a)

(b)

(c)

(d)

(e)
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Part 3: HMM

4. HMM Theory (20 points)

Recall our discussion of Hidden Markov Models (HMMs), which are statistical mod-
els where an unobserved (hidden) state sequence influences an observed se-
quence of data.

(a) Long-Term Behavior: If an HMM runs for many timesteps, we expect the
probabilities of being in each state to:

A. Continue changing randomly with no pattern.

B. Settle into stable values over time.

C. Eventually become equal for all states.

D. Always remain the same as the initial probabilities.

(b) Interpretation of (P n)ij: Let P be the matrix of transition probabilities. The
value of (P n)ij in the transition matrix raised to the power n represents:

A. The probability of being in state j after n steps, regardless of the
initial state.

B. The probability of transitioning from state i to state j in exactly n
steps.

C. The long-run proportion of time spent in state j.

D. The expected number of transitions from i to j over n steps.

Example: Consider the transition matrix:

P =

[
0.7 0.3
0.4 0.6

]
Then P 2 gives:

P 2 =

[
0.7 0.3
0.4 0.6

]
×
[
0.7 0.3
0.4 0.6

]
=

[
0.61 0.39
0.52 0.48

]
where (P 2)12 = 0.39.

(c) Powers of the Transition Matrix: The matrix P n, representing the transi-
tion probabilities after n steps, has the following property:

A. It becomes a diagonal matrix as n increases.

B. It converges to a matrix where all rows are identical.

C. It remains the same as P for all n.

D. It fluctuates indefinitely without a pattern.
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Hint: In many Markov chains, as n grows, the transition probabilities stabilize,
meaning that each row of P n approaches a unique limiting distribution (the
stationary distribution). This suggests that long-run behavior is independent of
the initial state.

Example: For the transition matrix P above, as n → ∞, P n converges to:

P∞ ≈
[
0.57 0.43
0.57 0.43

]

Answer:

(a)

(b)

(c)

5. The Forward-Backward Algorithm (20 points)

A key question in HMMs is how to compute the probability of a hidden state at a
particular time step given all observations.

To do this efficiently, we use the Forward-Backward Algorithm, which introduces
two key quantities:

- The forward probability:

αt(Zt) = P (X1, . . . , Xt, Zt)

which represents the probability of the first t observations and the current state.

- The backward probability:

βt(Zt) = P (Xt+1, . . . , Xn|Zt)

which represents the probability of future observations given the current state.

Using these definitions, answer the following:

(a) Recursive Formula for αt(Zt) The forward probability αt(Zt) can be com-
puted recursively using the previous timestep αt−1(Zt−1):

A. αt(Zt) = P (Xt|Zt)
∑

Zt−1
P (Zt|Zt−1)αt−1(Zt−1)

B. αt(Zt) = P (Xt|Zt)P (Zt)

C. αt(Zt) =
∑

Zt−1
P (Xt|Zt)P (Zt|Zt−1)αt−1(Zt−1)βt+1(Zt)

D. αt(Zt) = P (Xt|Zt)P (Zt|Zt−1)
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(b) Recursive Formula for βt(Zt) Similarly, the backward probability βt(Zt) can
be computed recursively from the next timestep βt+1(Zt+1):

A. βt(Zt) =
∑

Zt+1
P (Zt+1|Zt)P (Xt+1|Zt+1)βt+1(Zt+1)

B. βt(Zt) = P (Xt+1|Zt)P (Zt+1|Zt)βt+1(Zt+1)

C. βt(Zt) =
∑

Zt+1
P (Zt|Zt+1)P (Xt+1|Zt)βt+1(Zt+1)

D. βt(Zt) = P (Zt+1|Zt)P (Xt|Zt)βt(Zt)

(c) Computing P (Zt|X) Now, using αt(Zt) and βt(Zt), the posterior probability
of Zt given the full sequence X is:

A. P (Zt|X) = αt(Zt)βt(Zt)
P (X)

B. P (Zt|X) = P (X|Zt)P (Zt)
P (X)

C. P (Zt|X) = P (Xt|Zt)P (Zt|X1:t−1)
P (Xt|X1:t−1)

D. P (Zt|X) = αt(Zt)P (X)
βt(Zt)

(d) Why is the Forward-Backward Algorithm Efficient? The Forward-
Backward algorithm provides an efficient way to compute P (Zt|X) for all time
steps t. Which of the following best explains how it reduces computation com-
pared to a naive approach?

A. Instead of summing over all possible hidden state sequences, it breaks
the problem into two recursive computations—one moving forward
in time, and one moving backward—reducing the complexity from
O(n · |Z|n) to O(n|Z|2).

B. It replaces probabilities with log-probabilities, converting multiplica-
tion into addition, which reduces computational cost.

C. It precomputes P (X), avoiding the need for normalization in the final
computation of P (Zt|X).

D. It finds the most probable sequence of hidden states using dynamic
programming, rather than computing marginal probabilities for each
state individually.

Answer:

(a)

(b)

(c)

(d)
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