STAT 479: Homework 2

Due: 11:59PM Feb 11, 2025 by Canvas

Part 1: Naive Bayes

1. MLE for Gaussian Naive Bayes

Naive Bayes assumes that features $X = (X_1, X_2, ..., X_d)$ are conditionally independent given the class Y, and that $X_i | Y \sim \mathcal{N}(\mu_{i,Y}, \sigma_{i,Y}^2)$.

• Features are conditionally independent given the class:

$$P(X|Y) = \prod_{i=1}^{d} P(X_i|Y).$$

• Each feature $X_i | Y = k$ follows a Gaussian distribution:

$$P(X_i|Y=k) = \frac{1}{\sqrt{2\pi\sigma_{i,k}^2}} \exp\left(-\frac{(X_i - \mu_{i,k})^2}{2\sigma_{i,k}^2}\right).$$

- (a) **Likelihood Function**: Write the likelihood of the observed data $\{X_{i,j}\}_{j:Y_j=k}$, assuming $X_i|Y = k$ is Gaussian. Select the correct expression:
 - A. $\prod_{j:Y_j=k} \prod_{i=1}^{d} P(X_{i,j}|Y=k)$ B. $\prod_{j:Y_j=k} \prod_{i=1}^{d} \frac{1}{2\pi\sigma_{i,k}^2} \exp\left(-\frac{(X_{i,j}-\mu_{i,k})^2}{\sigma_{i,k}^2}\right)$ C. $\prod_{j:Y_j=k} \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi\sigma_{i,k}^2}} \exp\left(-\frac{(X_{i,j}-\mu_{i,k})^2}{2\sigma_{i,k}^2}\right)$ D. $\prod_{j:Y_j=k} \prod_{i=1}^{d} P(Y=k) \cdot P(X_{i,j})$
- (b) **Log-Likelihood**: Write the log-likelihood for $\mu_{i,k}$ and $\sigma_{i,k}^2$. For notation convenience, let N_k be the number of samples with label k: $N_k = \sum_{j=1}^n \mathbb{I}(Y_j = k)$. Select the correct expression:

A.
$$-\frac{N_k}{2}\log(2\pi\sigma_{i,k}^2) - \frac{1}{2\sigma_{i,k}^2}\sum_{j:Y_j=k}(X_{i,j} - \mu_{i,k})^2$$

B. $-\frac{1}{2}\log(2\pi\sigma_{i,k}^2) - \frac{1}{\sigma_{i,k}^2}\sum_{j:Y_j=k}(X_{i,j} - \mu_{i,k})^2$
C. $\sum_{j:Y_j=k}\log P(X_{i,j}|Y=k) + \log P(Y=k)$
D. $-\frac{N_k}{2}\log(2\pi) + \frac{\sum_{j:Y_j=k}(X_{i,j} - \mu_{i,k})^2}{2\sigma_{i,k}^2}$

(c) **MLE for** $\mu_{i,k}$: Derive the MLE for $\mu_{i,k}$. Select the correct estimator:

(20 points)

A.
$$\widehat{\mu_{i,k}} = \frac{\sum_{j:Y_j=k} X_{i,j}}{N_k}$$
B.
$$\widehat{\mu_{i,k}} = \frac{\sum_{j=1}^n X_{i,j}}{n}$$
C.
$$\widehat{\mu_{i,k}} = \frac{\sum_{j:Y_j=k} X_{i,j}^2}{N_k}$$
D.
$$\widehat{\mu_{i,k}} = \sum_{j:Y_j=k} X_{i,j}$$

Answer:			
(a)			
(b)			
(c)			

2. Modified Naive Bayes with Feature Dependencies

(20 points)

Background: In the standard Naive Bayes classifier, we assume that all features X_1, X_2, \ldots, X_d are conditionally independent given the class label Y:

$$P(X_1, X_2, \dots, X_d \mid Y) = \prod_{i=1}^d P(X_i \mid Y)$$

However, in many real-world scenarios, features exhibit dependencies. To address this, we modify the Naive Bayes model to account for such dependencies. Specifically, we introduce a structure where some features are conditionally dependent on others.

Problem Statement: Consider a dataset with four features X_1, X_2, X_3, X_4 and a binary class label $Y \in \{0, 1\}$. Instead of assuming full independence, we impose the dependency structure captured in the following joint distribution:

$$P(X_1, X_2, X_3, X_4 \mid Y) = P(X_1 \mid Y)P(X_2, X_3 \mid X_1, Y)P(X_4 \mid Y)$$

Here, $P(X_2, X_3 | X_1, Y)$ is modeled as a joint Gaussian distribution with mean and covariance matrix dependent on Y.

Given the probability distributions:

- P(Y=0) = 0.5, P(Y=1) = 0.5
- $P(X_1 | Y)$ and $P(X_4 | Y)$ are standard normal univariate Gaussians.
- $P(X_2, X_3 \mid X_1, Y)$ follows a multivariate Gaussian distribution:

HW 2

- For Y = 0: $\mu_{X_2,X_3} = \begin{bmatrix} 2\\ 3 \end{bmatrix} + \alpha X_1, \quad \Sigma_{X_2,X_3} = \begin{bmatrix} 1 & 0.5\\ 0.5 & 1 \end{bmatrix}$ - For Y = 1: $\mu_{X_2,X_3} = \begin{bmatrix} 1\\ -1 \end{bmatrix} + \alpha X_1, \quad \Sigma_{X_2,X_3} = \begin{bmatrix} 1 & -0.3\\ -0.3 & 1.5 \end{bmatrix}$

(a) **Computing** $P(X \mid Y)$

What is $P(X_1 = 0, X_2 = 2, X_3 = 3, X_4 = 0 | Y = 0)$ under this modified Naive Bayes model?

- A. 0.001
- B. 0.01
- C. 0.03
- D. 0.3
- (b) Computing P(X,Y)

What is $P(X_1 = 0, X_2 = 2, X_3 = 3, X_4 = 0, Y = 0)$ under this modified Naive Bayes model?

- A. 0.001
- B. 0.015
- C. 0.2
- $D. \ 0.5$
- (c) **Model Complexity** How many parameters are required to fully parameterize this modified Naive Bayes model compared to the standard Naive Bayes model?
 - A. More than standard Naive Bayes because the dependency structure introduces additional covariance terms in $P(X_2, X_3 | X_1, Y)$.
 - B. Fewer than standard Naive Bayes because the dependency structure reduces the total number of independent conditional distributions.
 - C. The same as standard Naive Bayes because each feature still depends on the class label Y.
 - D. It depends on the dataset the number of parameters cannot be determined without knowing the data distribution.

 Answer:

 (a)

 (b)

 (c)

Part 2: Bayesian Networks

3. Conditional Independence and D-Separation

Consider the following Bayesian Network, where A, B, C, and D are random variables:

$$A \to B \to D, \quad A \to C \to D.$$

- (a) **Markov Property**: Which of the following statements about conditional independence in this Bayesian Network is correct?
 - A. A and D are conditionally independent given B.
 - B. A and D are conditionally independent given C.
 - C. B and C are conditionally independent given D.
 - D. B and C are conditionally independent given A.
- (b) **Joint Distribution**: Which of the following correctly represents the joint probability P(A, B, C, D)?
 - A. P(A, B, C, D) = P(A)P(B|A)P(C|A)P(D|B, C)
 - B. P(A, B, C, D) = P(A)P(B)P(C|A)P(D|B, C)
 - C. P(A, B, C, D) = P(A)P(B|A)P(C)P(D|B, C)
 - D. P(A, B, C, D) = P(A|B)P(B|C)P(C|D)P(D)
- (c) **d-separation**: Which of the following pairs of variables are d-separated in the given network, assuming no evidence is observed?
 - A. A and D
 - B. B and C
 - C. $A \mbox{ and } C$
 - D. None of the above
 - E. All of the above
- (d) **d-separation**: Which of the following pairs of variables are d-separated in the given network, assuming *B* is observed?
 - A. A and D
 - B. B and C
 - C. A and C
 - D. None of the above
 - E. All of the above
- (e) **D-Separation and Deep Generative Models:** Suppose a deep generative model learns latent variables Z that mediate dependencies between observed variables. Which of the following statements is true?

(20 points)

- (a) If Z explains the correlation between X and Y, then conditioning on Z should make X and Y independent.
- (b) Adding a latent variable always increases dependencies between observed variables.
- (c) If Z is a common parent of X and Y, then X and Y are always independent.
- (d) If Z is observed, it has no effect on the conditional independence structure of X and Y.

Answer:			
(a)			
(b)			
(c)			
(d)			
(e)			

Part 3: HMM

4. HMM Theory

(20 points)

Recall our discussion of *Hidden Markov Models (HMMs)*, which are statistical models where an **unobserved (hidden) state sequence** influences an **observed sequence** of data.

- (a) **Long-Term Behavior:** If an HMM runs for many timesteps, we expect the probabilities of being in each state to:
 - A. Continue changing randomly with no pattern.
 - B. Settle into stable values over time.
 - C. Eventually become equal for all states.
 - D. Always remain the same as the initial probabilities.
- (b) **Interpretation of** $(P^n)_{ij}$: Let P be the matrix of transition probabilities. The value of $(P^n)_{ij}$ in the transition matrix raised to the power n represents:
 - A. The probability of being in state j after n steps, regardless of the initial state.
 - B. The probability of transitioning from state i to state j in exactly n steps.
 - C. The long-run proportion of time spent in state j.
 - D. The expected number of transitions from i to j over n steps.

Example: Consider the transition matrix:

$$P = \begin{bmatrix} 0.7 & 0.3\\ 0.4 & 0.6 \end{bmatrix}$$

Then P^2 gives:

$$P^{2} = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} \times \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.61 & 0.39 \\ 0.52 & 0.48 \end{bmatrix}$$

where $(P^2)_{12} = 0.39$.

- (c) **Powers of the Transition Matrix:** The matrix P^n , representing the transition probabilities after n steps, has the following property:
 - A. It becomes a diagonal matrix as n increases.
 - B. It converges to a matrix where all rows are identical.
 - C. It remains the same as P for all n.
 - D. It fluctuates indefinitely without a pattern.

Hint: In many Markov chains, as n grows, the transition probabilities stabilize, meaning that each row of P^n approaches a unique limiting distribution (the stationary distribution). This suggests that long-run behavior is independent of the initial state.

Example: For the transition matrix P above, as $n \to \infty$, P^n converges to:

$$P^{\infty} \approx \begin{bmatrix} 0.57 & 0.43\\ 0.57 & 0.43 \end{bmatrix}$$

Answer:

(a)

(b)

(c)

5. The Forward-Backward Algorithm

(20 points)

A key question in HMMs is how to compute the probability of a hidden state at a particular time step given all observations.

To do this efficiently, we use the **Forward-Backward Algorithm**, which introduces two key quantities:

- The forward probability:

$$\alpha_t(Z_t) = P(X_1, \dots, X_t, Z_t)$$

which represents the probability of the first t observations and the current state.

- The backward probability:

$$\beta_t(Z_t) = P(X_{t+1}, \dots, X_n | Z_t)$$

which represents the probability of future observations given the current state. Using these definitions, answer the following:

(a) **Recursive Formula for** $\alpha_t(Z_t)$ The forward probability $\alpha_t(Z_t)$ can be computed recursively using the previous timestep $\alpha_{t-1}(Z_{t-1})$:

A.
$$\alpha_t(Z_t) = P(X_t|Z_t) \sum_{Z_{t-1}} P(Z_t|Z_{t-1}) \alpha_{t-1}(Z_{t-1})$$

B. $\alpha_t(Z_t) = P(X_t|Z_t)P(Z_t)$
C. $\alpha_t(Z_t) = \sum_{Z_{t-1}} P(X_t|Z_t)P(Z_t|Z_{t-1}) \alpha_{t-1}(Z_{t-1})\beta_{t+1}(Z_t)$
D. $\alpha_t(Z_t) = P(X_t|Z_t)P(Z_t|Z_{t-1})$

(b) **Recursive Formula for** $\beta_t(Z_t)$ Similarly, the backward probability $\beta_t(Z_t)$ can be computed recursively from the next timestep $\beta_{t+1}(Z_{t+1})$:

A.
$$\beta_t(Z_t) = \sum_{Z_{t+1}} P(Z_{t+1}|Z_t) P(X_{t+1}|Z_{t+1}) \beta_{t+1}(Z_{t+1})$$

B. $\beta_t(Z_t) = P(X_{t+1}|Z_t) P(Z_{t+1}|Z_t) \beta_{t+1}(Z_{t+1})$
C. $\beta_t(Z_t) = \sum_{Z_{t+1}} P(Z_t|Z_{t+1}) P(X_{t+1}|Z_t) \beta_{t+1}(Z_{t+1})$
D. $\beta_t(Z_t) = P(Z_{t+1}|Z_t) P(X_t|Z_t) \beta_t(Z_t)$

(c) **Computing** $P(Z_t|X)$ Now, using $\alpha_t(Z_t)$ and $\beta_t(Z_t)$, the posterior probability of Z_t given the full sequence X is:

A.
$$P(Z_t|X) = \frac{\alpha_t(Z_t)\beta_t(Z_t)}{P(X)}$$

B.
$$P(Z_t|X) = \frac{P(X|Z_t)P(Z_t)}{P(X)}$$

C.
$$P(Z_t|X) = \frac{P(X_t|Z_t)P(Z_t|X_{1:t-1})}{P(X_t|X_{1:t-1})}$$

D.
$$P(Z_t|X) = \frac{\alpha_t(Z_t)P(X)}{\beta_t(Z_t)}$$

- (d) Why is the Forward-Backward Algorithm Efficient? The Forward-Backward algorithm provides an efficient way to compute $P(Z_t|X)$ for all time steps t. Which of the following best explains how it reduces computation compared to a naive approach?
 - A. Instead of summing over all possible hidden state sequences, it breaks the problem into two recursive computations—one moving forward in time, and one moving backward—reducing the complexity from $O(n \cdot |Z|^n)$ to $O(n|Z|^2)$.
 - B. It replaces probabilities with log-probabilities, converting multiplication into addition, which reduces computational cost.
 - C. It precomputes P(X), avoiding the need for normalization in the final computation of $P(Z_t|X)$.
 - D. It finds the most probable sequence of hidden states using dynamic programming, rather than computing marginal probabilities for each state individually.

Answer:		
(a)		
(b)		
(c)		
(d)		