
STAT 479: Homework 3

Due: 11:59PM Mar 1, 2025 by Canvas

1. Variable Elimination in a Bayesian Network (20 points)

Consider a Bayesian network with the following structure:

A → B → C, A → D → C, A → E

with categorical random variables A,B,C,D,E. The joint probability is thus:

P (A,B,C,D,E) = P (A)P (B | A)P (D | A)P (C | B,D)P (E | A).

We want to compute the conditional probability:

P (E = e|B = b) =
P (B = b, E = e)

P (B = b)

which requires computing P (B = b, E = e) and normalizing over e. Let’s walk
through Variable Elimination to see the most efficient way to answer this query.

(a) Incorporating Evidence: Variable elimination starts by incorporating the
evidence B = b in the joint distribution. What is the correct way to modify the
joint distribution?

A. Keep all factors as is.

B. Set B = b in all factors where it appears:

P (A)P (B = b|A)P (D|A)P (C|B = b,D)P (E|A)

C. Remove all factors that contain B: P (A)P (D|A)P (C|D)P (E|A)
D. Sum out B immediately:

∑
B P (A)P (B|A)P (D|A)P (C|B,D)P (E|A)

(b) Starting Elimination: After incorporating evidence, we have the factors:

f1(A) = P (A), f2(A) = P (B = b|A), f3(A,D) = P (D|A)

f4(D,C) = P (C|B = b,D), f5(A,E) = P (E|A)

The first variable we eliminate is C, since it only appears in f4(D,C). What
are the remaining factors after summing out C?

A. f1(A), f2(A), f3(A,D), f5(A,E), f6(D)

B. f1(A), f2(A), f3(A,D), f5(A,E), f6(A,D)

C. f1(A), f2(A), f3(A,D), f5(A,E), f6(A,C)

D. f1(A), f2(A), f3(A,D), f5(A,E), f6(A)
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(c) Eliminating D first, then A: Now we need to eliminate D and A. Suppose
we eliminate D first. What would be the resulting factorization?

A. f1(A), f2(A), f7(A), f5(A,E), where f7(A) =
∑

D f3(A,D)f6(D)

B. f1(A), f2(A), f7(D), f5(A,E), where f7(D) =
∑

D f3(A,D)f6(D)

C. f1(A), f2(A), f7(A,E), f6(D), where f7(A,E) =
∑

D f3(A,D)f5(A,E)

D. f1(A), f2(A), f3(A,D), f6(D), f7(A,E), where f7(A,E) =
∑

D f3(A,D)f5(A,E)

(d) Eliminating A first, then D: Now, instead, suppose we eliminate A before
eliminating D. What would be the resulting factorization?

A. f7(D,E), f6(D), where f7(D,E) =
∑

A f1(A)f2(A)f3(A,D)f5(A,E)

B. f1(A), f2(A), f7(A,D), f5(A,E), where f7(A,D) =
∑

A f3(A,D)f6(D)

C. f1(A), f2(A), f7(A,E), f6(D), where f7(A,E) =
∑

A f3(A,D)f5(A,E)

D. f1(A), f2(A), f3(A,D), f7(A,E), where f7(A,E) =
∑

A f3(A,D)f5(A,E)

(e) Comparing the Orders: Based on your calculations above, which order is
more efficient in terms of minimizing the largest intermediate factor?

A. Eliminating A before D is always more efficient.

B. Eliminating A before eliminating D is more efficient when |D| > |A|.
C. Both orders create the same largest intermediate factor in all cases.

Answer:

(a)

(b)

(c)

(d)

(e)
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2. Newton-Raphson for Poisson GLM (30 points)

Consider a generalized linear model (GLM) where the response y follows a Poisson
distribution in exponential family form p(y|η) = h(y) exp(ηT (y)−A(η)), with natural
parameter η = xTβ.

(a) Exponential Family Form: Derive the forms of T (y), A(η), and E[y] for

the Poisson distribution P (y|λ) = λye−λ

y!
when η = xTβ. Select the correct

expression:

A. T (y) = y, A(η) = eη, E[y] = ex
T β

B. T (y) = ey, A(η) = η, E[y] = xTβ

C. T (y) = y, A(η) = η2, E[y] = 2xTβ

D. T (y) = ln y, A(η) = e−η, E[y] = e−xT β

(b) Log-Likelihood: For a dataset {(xj, yj)}nj=1 with yj ∼ Poisson(ex
T
j β), write

the log-likelihood ℓ(β). Select the correct expression:

A. ℓ(β) =
∑n

j=1[yjx
T
j β − ex

T
j β − ln(yj!)]

B. ℓ(β) =
∑n

j=1[yje
xT
j β − xT

j β − y2j ]

C. ℓ(β) =
∑n

j=1[ln(yj)− ex
T
j β + xT

j β]

D. ℓ(β) =
∑n

j=1[yj − ln(ex
T
j β) + ln(yj!)]

(c) Gradient: Compute the gradient∇ℓ(β) of the log-likelihood. Select the correct
expression:

A. ∇ℓ(β) =
∑n

j=1(yj − ex
T
j β)xj

B. ∇ℓ(β) =
∑n

j=1(e
xT
j β − yj)xj

C. ∇ℓ(β) =
∑n

j=1 yjxje
xT
j β

D. ∇ℓ(β) =
∑n

j=1 xj/e
xT
j β

(d) Newton-Raphson Update: Given the Hessian H =
∑n

j=1 e
xT
j βxjx

T
j , derive

the Newton-Raphson update rule for β. Select the correct expression:

A. β(t+1) = β(t) −
(∑n

j=1 e
xT
j β(t)

xjx
T
j

)−1∑n
j=1(yj − ex

T
j β(t)

)xj

B. β(t+1) = β(t) +
(∑n

j=1 yjxjx
T
j

)−1∑n
j=1 e

xT
j β(t)

xj

C. β(t+1) = β(t) −
(∑n

j=1 xjx
T
j

)−1∑n
j=1 yjxj

D. β(t+1) = β(t) + ex
T
j β(t) ∑n

j=1(yj − xT
j β

(t))xj

Answer:
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(a)

(b)

(c)

(d)

3. MLE for Bayesian Network (20 points)

Consider a simple Bayesian network A → B with binary variables A,B ∈ {0, 1}
and joint distribution P (A,B) = P (A)P (B|A). You have a complete dataset of n
observations, where na,b denotes the number of times (A = a,B = b) occurs.

Let θ1 = P (A = 1), θ2 = P (B = 1 | A = 0), θ3 = P (B = 1 | A = 1).

(a) Log-Likelihood: Write the log-likelihood ℓ(θ1, θ2, θ3). Select the correct ex-
pression:

A. ℓ(θ1, θ2, θ3) = n0,0 ln(1 − θ1) + n0,1 ln(1 − θ1)θ2 + n1,0 ln θ1(1 − θ3) +
n1,1 ln θ1θ3

B. ℓ(θ1, θ2, θ3) = n0,0 ln[(1−θ1)(1−θ2)]+n0,1 ln[(1−θ1)θ2]+n1,0 ln[θ1(1−
θ3)] + n1,1 ln[θ1θ3]

C. ℓ(θ1, θ2, θ3) = n ln θ1 + n0,1 ln θ2 + n1,1 ln θ3

D. ℓ(θ1, θ2, θ3) = n0,0 ln θ1 + n0,1 ln θ2 + n1,0 ln θ3

(b) MLE for P (B = 1|A = 0): Derive the MLE for P (B = 1|A = 0) by maximizing
the log-likelihood. Select the correct estimator:

A. θ̂2,MLE = n0,1

n0,0+n0,1

B. θ̂2,MLE = n0,1

n

C. θ̂2,MLE = n0,0+n0,1

n

D. θ̂2,MLE = n1,1

n1,0+n1,1

Answer:

(a)

(b)
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4. Sharding a Bayesian Network (20 points)

Consider a Bayesian network with structure X1 → X2 → X3, X1 → X4, X2 → X4,
and joint distribution P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X1, X2).

(a) Sharding Variable: Determine which set of variables, when conditioned on,
shards the BN into two conditionally independent subgraphs, one containing
X1 and the other X3. Select the correct minimal set:

A. {X2}
B. {X1, X2}
C. {X2, X4}
D. {X4}

Hint: Use d-separation to find a minimal set that blocks all paths between X1

and X3.

(b) Using Sharding to Simplify Computation: Using the minimal sharding
set from part (a), how can we compute P (X4) in a way that takes advantage of
conditional independence?

A. Compute P (X4) in two independent steps: first sum over X1, then
over X2.

B. Compute P (X4) in one step by marginalizing overX1 andX2 together.

C. Compute P (X4) by conditioning on X3, then summing over X1, X2.

D. Compute P (X4) by first marginalizingX3, then summing overX1, X2.

(c) Efficiency of Distributed Computation: Suppose we distribute inference
across separate computing units, where one unit handles (X1, X4) and another
handles (X3). Which of the following best describes how sharding reduces com-
putational complexity?

A. It allows us to compute P (X4) and P (X3) independently, reducing
redundant summations.

B. It changes the factorization structure to remove dependencies between
all variables.

C. It eliminates the need for marginalization when computing any query.

D. It makes all variables independent, allowing direct computation of
individual probabilities.

Answer:

(a)

(b)

(c)
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5. Mid-Semester Feedback (10 points)

We’re one-third of the way through Stat 479! Your feedback will help improve the
course.

(a) Course Pacing: How do you feel about the pace of the course so far?

A. The pace is much too fast, and I struggle to keep up with the content.

B. The pace is slightly too fast, but I can manage with extra effort.

C. The pace is about right, balancing challenge and understanding.

D. The pace is too slow, and I’d prefer more challenging material sooner.

(b) Lecture Clarity: How clear are the lectures’ explanations and examples?

A. Lectures are very unclear, and I often leave confused.

B. Lectures are somewhat unclear, needing more examples or simpler
explanations.

C. Lectures are mostly clear, with minor areas for improvement.

D. Lectures are very clear, and I grasp the material well from them.

(c) Assignment Difficulty: How do you find the difficulty of the homework as-
signments?

A. Assignments are far too difficult, requiring excessive time or external
help.

B. Assignments are challenging but manageable with effort and course
resources.

C. Assignments are appropriately difficult, aligning well with lecture con-
tent.

D. Assignments are too easy, and I’d like more complex problems.

(d) Resource Usefulness: How useful are the course resources (e.g., slides, notes,
textbooks, office hours) in supporting your learning?

A. Resources are not useful, and I rarely rely on them.

B. Resources are somewhat useful, but I need more or better options.

C. Resources are generally useful, meeting most of my needs.

D. Resources are highly useful, significantly aiding my understanding.

(e) Time on Homework: On average, how much time do you spend per week on
homework assignments for this course?

A. 0-5 hours

B. 6-10 hours

C. 11-15 hours

D. 16+ hours

(f) Time on Readings: On average, how much time do you spend per week on
assigned readings or supplemental materials for this course?
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A. 0-1 hours

B. 2-3 hours

C. 4-5 hours

D. 6+ hours

(g) Time on Lecture Review: On average, how much time do you spend per
week reviewing lecture notes or recordings outside of class?

A. 0-1 hours

B. 2-3 hours

C. 4-5 hours

D. 6+ hours

(h) Open Feedback: In 3-5 sentences, provide any additional feedback about
your experience in the course so far. What’s working well, and what could be
improved for the second half of the semester?

Answer:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
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