
STAT 479: Homework 4

Due: 11:59PM Mar 8, 2025 by Canvas

1. MLE in Bayesian Networks (20 points)

Consider the following Bayesian Network with four binary variables:

X1 → X2, X1 → X3, X2 → X4, X3 → X4

The dataset consists of:

X1 X2 X3 X4 Count

0 0 0 0 30
0 0 0 1 10
0 0 1 0 20
0 0 1 1 20
0 1 0 0 25
0 1 0 1 15
0 1 1 0 35
0 1 1 1 15
1 0 0 0 20
1 0 0 1 10
1 0 1 0 25
1 0 1 1 15
1 1 0 0 30
1 1 0 1 20
1 1 1 0 40
1 1 1 1 30

(a) Compute the MLE for P (X2 = 1|X1 = 0). Round to the nearest tenth.

A. 0.4

B. 0.5

C. 0.6

D. 0.7

(b) Compute the MLE for P (X4 = 1|X2 = 1, X3 = 0). Round to the nearest tenth.

A. 0.3

B. 0.4

C. 0.5

D. 0.6
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(c) The variable X4 is a collider. What happens when we condition on X4?

A. It blocks the path between X2 and X3, making them independent.

B. It introduces a correlation between X2 and X3.

C. It has no effect unless we also condition on X1.

D. It enforces complete independence among all variables.

(d) After fitting our estimate of P (X2|X1), someone informs us about an unobserved
variable L that influences both X2 and X3, but we know we cannot observe L.
What should we do to our estimate?

A. Keep the estimate unchanged, since we already conditioned on X1.

B. Acknowledge potential bias and use sensitivity analysis to estimate
the possible impact of L.

C. Widen our confidence intervals to ensure the true value is captured.

D. Ignore L since unobserved variables do not affect MLE estimates.

Answer:

(a)

(b)

(c)

(d)

2. MRFs (20 points)

Consider a Markov Random Field (MRF) with the following structure:

• Nodes: X1, X2, X3, X4

• Edges: (X1, X2), (X2, X3), (X3, X4), (X4, X1), (X1, X3)

• The joint probability distribution is given by:

P (X1, X2, X3, X4) ∝ exp

 ∑
(i,j)∈E

θijXiXj


(a) Which of the following is a correct factorization of this MRF?

A. P (X1, X2, X3, X4) = ϕ(X1, X2)ϕ(X2, X3)ϕ(X3, X4)ϕ(X4, X1)

B. P (X1, X2, X3, X4) = ϕ(X1, X2, X3)ϕ(X3, X4)

C. P (X1, X2, X3, X4) = ϕ(X1, X2)ϕ(X2, X3)ϕ(X3, X4)ϕ(X4, X1)ϕ(X1, X3)

D. P (X1, X2, X3, X4) = ϕ(X1, X2, X3, X4)
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(b) Why is computing the partition function Z difficult for large MRFs?

A. The partition function requires summing over an exponential number
of terms.

B. The partition function depends on the parameters θij, which are un-
known.

C. The partition function does not exist for undirected graphical models.

D. The partition function is always equal to 1.

(c) Removing edge (X1, X3) changes which independence property?

A. X1 ⊥ X3 | {X2, X4}
B. X1 ⊥ X3 | X2

C. X1 ⊥ X4 | X2

D. X1 ⊥ X2 | X4

(d) A researcher is using Graphical Lasso to learn the structure of a Markov Random
Field (MRF) from data. However, they observe that small changes in the reg-
ularization parameter result in large differences in the learned graph structure,
with many edges appearing or disappearing unpredictably.

Which of the following is the most likely reason for this instability?

A. The sample size is too small relative to the number of variables, leading
to an unstable covariance estimate.

B. The true MRF is not connected, so regularization causes disjoint com-
ponents to form.

C. Graphical Lasso is not a consistent estimator and always leads to
instability.

D. The data is non-Gaussian, violating the assumptions of Graphical
Lasso.

Answer:

(a)

(b)

(c)

(d)
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3. Gaussian Graphical Models – Step-by-Step Proof (20 points)

We consider an undirected graphical model where a set of random variables X =
{X1, ..., Xd} follows a joint Gaussian distribution:

X ∼ N (µ,Σ)

where Σ is the covariance matrix (Σ ∈ S++), and its inverse Θ = Σ−1 is the
precision matrix. Given two nodes Xj, Xk, and the remaining variables Z = {Xi |
i /∈ {j, k}}, we want to show:

Xj ⊥ Xk | Z if and only if Θjk = 0.

(a) Step 1: Conditional Independence in Gaussian Graphical Models

The joint probability density function of a multivariate Gaussian is:

p(X) ∝ exp

(
−1

2
XTΘX

)
From this, we can see that the entries of the precision matrix Θ describe:

A. The marginal variances of X.

B. The correlations between variables.

C. The structure of the conditional dependencies between variables.

D. The eigenvalues of the covariance matrix.

(b) Step 2: Identifying the Relevant Conditional Distribution

To determine whether Xj and Xk are conditionally independent given Z, we
need to examine:

A. The marginal covariance matrix of Xj and Xk.

B. The conditional precision matrix of Xj and Xk given Z.

C. The determinant of Θ.

D. The sum of all precision matrix entries.

(c) Step 3: Expressing the Conditional Distribution

When conditioning on Z, the precision matrix for Xj, Xk | Z is given by:

Θ(j,k)|Z = Θ{j,k},{j,k} −Θ{j,k},ZΘ
−1
Z,ZΘZ,{j,k}

Given this, which of the following must be true for Xj and Xk to be condition-
ally independent given Z?

A. The determinant of Θ(j,k)|Z is zero.

B. The off-diagonal entry of Θ(j,k)|Z (i.e., (Θ(j,k)|Z)jk) is zero.

C. The sum of all precision matrix entries is zero.
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D. The covariance matrix entry Σjk must be zero.

(d) Step 4: Relating This to the Original Precision Matrix

From our result, we see that the conditional independence condition is met
when:

A. Θjk = 0.

B. Σjk = 0.

C. Θ−1
jk = 0.

D. Θjj = 0.

(e) Step 5: Interpreting the Graph Structure

In an undirected Gaussian graphical model, an edge exists between two nodes
Xj and Xk if and only if:

A. Θjk ̸= 0.

B. Σjk ̸= 0.

C. Θ−1
jk ̸= 0.

D. Θjj = 0.

Answer:

(a)

(b)

(c)

(d)

(e)

4. Introduction to Conditional Random Fields (20 points)

A Conditional Random Field (CRF) is an undirected graphical model that mod-
els a conditional probability distribution P (Y | X) instead of the joint distribution
P (X, Y ). This is particularly useful for structured prediction problems where labels
Y = (Y1, ..., Yn) depend on input features X = (X1, ..., Xn).

Consider a linear-chain CRF with sequence labels Y1, Y2, Y3 conditioned on observa-
tions X1, X2, X3. The probability of a labeling is given by:

P (Y | X) =
1

Z(X)

3∏
i=1

ψ(Yi, Yi+1, X)

where:
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• ψ(Yi, Yi+1, X) = exp(θYi,Yi+1
+
∑

k wkfk(Yi, X))

• Z(X) is the partition function ensuring the probability distribution normalizes
properly.

(a) Understanding Factorization What is the key difference between a CRF and
a Markov Random Field (MRF)?

A. CRFs model P (Y | X), whereas MRFs model P (X, Y ).

B. CRFs use directed edges, while MRFs use undirected edges.

C. CRFs require a fully connected graph, whereas MRFs do not.

D. MRFs only allow discrete variables, while CRFs allow continuous ones.

(b) Computing Conditional Probabilities Suppose we are given parameter val-
ues θYi,Yi+1

and feature weights wk. Which of the following is true about the
conditional probability P (Y | X)?

A. It is computed by normalizing the product of potential functions over
all possible label sequences.

B. It can be computed directly without using the partition function.

C. It is always independent of the input features X.

D. It is equal to the sum of all local potential functions.

(c) Parameter Estimation What is the most common method for learning CRF
parameters θ and w from labeled data?

A. Maximum Likelihood Estimation (MLE) via gradient descent.

B. Expectation-Maximization (EM) since CRFs have latent variables.

C. Bayesian inference using Gibbs Sampling.

D. k-Nearest Neighbors since CRFs are nearest-neighbor models.

Answer:

(a)

(b)

(c)

5. Introduction to Importance Sampling (20 points)

Importance sampling is a method for estimating expectations of a function f(x) under
a distribution p(x), when direct sampling from p(x) is difficult. Instead, we sample
from an easier proposal distribution q(x) and use importance weights to correct for
the difference. We define:
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Ep(x)[f(x)] =

∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx

and approximate this expectation using L samples x(1), . . . , x(L) ∼ q(x):

Ep(x)[f(x)] ≈
1∑L
i=1 ui

L∑
i=1

f(x(i))ui,

where the unnormalized importance weights are:

ui =
p(x(i))

q(x(i))
.

(a) Why Use Importance Sampling? Which of the following best describes why
importance sampling is useful?

A. It allows us to estimate expectations when direct sampling from p(x)
is difficult.

B. It generates exact samples from p(x) without error.

C. It reduces variance compared to sampling directly from p(x).

D. It removes the need to compute the normalizing constant of p(x).

(b) Understanding Importance Weights What can we say about the expected
value of the importance weight ui under the proposal distribution q(x)?

A. Eq(x)[ui] = Ep(x)[ui], since importance weights correct for sampling
bias.

B. Eq(x)[ui] = 0 if p(x) ̸= q(x).

C. Eq(x)[ui] = 1, ensuring the estimator remains unbiased.

D. Eq(x)[ui] grows as the difference between p(x) and q(x) increases.

(c) Variance of Importance Weights What is the closed-form expression for the

variance of the importance weights ui = p(x)
q(x)

under the proposal distribution

q(x)?

A. Varq(x)[ui] = Eq(x)[u
2
i ]− Eq(x)[ui]

2.

B. Varq(x)[ui] = Ep(x)[ui]− 1.

C. Varq(x)[ui] = Eq(x)[p(x)]− Eq(x)[q(x)].

D. Varq(x)[ui] =
Ep(x)[u

2
i ]

Eq(x)[ui]
.

(d) Variance of Importance Weights and High-Dimensional Spaces Sup-
pose that p(x) and q(x) are both factored distributions over d independent
dimensions:

p(x) =
d∏

i=1

pi(xi), q(x) =
d∏

i=1

qi(xi).
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How does the variance of importance weights scale with d, assuming that pi(xi)/qi(xi)
has variance v for each individual dimension?

A. The variance remains constant as d increases.

B. The variance scales linearly as O(d).

C. The variance scales exponentially asO(vd), where v is the per-dimension
variance of importance weights.

D. The variance decreases as d increases due to averaging effects.

Answer:

(a)

(b)

(c)

(d)

6. Parameter Learning in HMMs (0 points (OPTIONAL))

For those of you who want to start flexing your programming muscles, please en-
joy implementing this E-M algorithm. This question is OPTIONAL and will not
contribute to your grade.

Y1 Y2 · · · YT

X1 X2 XT

Consider an HMM with Yt ∈ [M ], Xt ∈ RK (M,K ∈ N). Let (π,A, {µi, σ
2
i }Mi=1) be

its parameters, where π ∈ RM is the initial state distribution, A ∈ RM×M is the
transition matrix, µi ∈ RK and σ2

i > 0 are parameters of the emission distribution,
which is defined to be an isotropic Gaussian. In other words,

P (Y1 = i) = πi (1)

P (Yt+1 = j|Yt = i) = Aij (2)

P (Xt|Yt = i) = N (Xt;µi, σ
2
i I). (3)

In the attached baum_welch.py file, implement the Baum-Welch (EM) algorithm
that estimates parameters from data X ∈ RN×T×K , which is a collection of N
observed sequences of length T . Please find unimplemented TODO blocks in the
template for you to implement. The template has its own toy problem to verify the
implementation.
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