
STAT 479: Homework 5

Due: 11:59PM Mar 18, 2025 by Canvas

1. True-False Conceptual Questions (20 points)

Write TRUE or FALSE for each of these statements.

(a) The Bayesian Information Criterion (BIC) includes a penalty term for model
complexity, discouraging overly complex models even if they fit the data well.

(b) The Chow-Liu algorithm can learn Bayesian networks with arbitrary structure,
including cycles.

(c) In a causal graphical model, observing a common effect (collider) of two variables
can create a spurious association between them, even if they were originally
independent.

(d) In causal discovery, controlling for a confounder ensures that any observed as-
sociation between two variables must be causal.

(e) The Expectation-Maximization (EM) algorithm improves the model parameters
at each iteration by directly maximizing the likelihood of the observed data.

(f) The likelihood function computed during EM is guaranteed to increase or remain
constant at each iteration.

(g) Variational inference approximates the posterior distribution by converting in-
ference into an optimization problem that minimizes the Kullback-Leibler (KL)
divergence.

(h) The Evidence Lower Bound (ELBO) is a key objective in variational inference,
providing a tractable lower bound on the log-likelihood.

(i) The mean-field approximation in variational inference assumes that latent vari-
ables are independent, simplifying computation but potentially reducing accu-
racy.

(j) Unlike Markov Chain Monte Carlo (MCMC), variational inference always pro-
duces an unbiased estimate of the posterior.

Answer:

(a)

(b)

(c)
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(d)

(e)

(f)

(g)

(h)

(i)

(j)

2. Deriving EM Updates for a Gaussian Mixture Model (GMM) (20 points)

A Gaussian Mixture Model assumes that data points are generated from a mixture
of K Gaussian distributions, each with a mean µk, covariance Σk, and a mixing
weight πk. As introduced in class, the Expectation-Maximization (EM) algorithm
iteratively estimates these parameters.

(a) Setting Up the Model

We model the data as being drawn from K Gaussian components:

p(x|θ) =
K∑
k=1

πkN (x|µk,Σk)

where πk are the mixing weights summing to 1, and N (x|µk,Σk) is a Gaussian
density function. Which of the following best describes the latent variables in
the GMM framework?

A. The mixing weights πk that determine the prior probability of each
Gaussian component.

B. The covariance matrices Σk, which control the shape of each Gaussian
distribution.

C. The component assignments zn, which indicate which Gaussian com-
ponent generated each data point.

D. The observed data points xn, which follow a mixture of Gaussians.

(b) Expectation Step (E-Step)

In the E-step, we compute the posterior responsibility γnk, which represents the
probability that data point xn was generated by component k:

γnk = p(zn = k|xn, θ
(t)) =

π
(t)
k N (xn|µ(t)

k ,Σ
(t)
k )∑K

j=1 π
(t)
j N (xn|µ(t)

j ,Σ
(t)
j )
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What is the main role of γnk in the EM algorithm?

A. It represents the maximum likelihood estimate of the Gaussian pa-
rameters.

B. It updates the mixing weights to reflect the proportion of data points
assigned to each cluster.

C. It acts as a ”soft” assignment of each data point to the Gaussian
components.

D. It maximizes the log-likelihood function directly.

(c) Maximization Step (M-Step)

In the M-step, we update the parameters of the Gaussians by maximizing the
expected complete-data log-likelihood. The updates are:

π
(t+1)
k =

1

N

N∑
n=1

γnk

µ
(t+1)
k =

∑N
n=1 γnkxn∑N
n=1 γnk

Σ
(t+1)
k =

∑N
n=1 γnk(xn − µ

(t+1)
k )(xn − µ

(t+1)
k )T∑N

n=1 γnk

What does the M-step accomplish?

A. It reassigns each data point to a single Gaussian component.

B. It updates the model parameters to maximize the likelihood given the
current soft assignments.

C. It computes the posterior probability of each data point belonging to
a Gaussian component.

D. It eliminates one Gaussian component per iteration to simplify the
model.

(d) Convergence and Likelihood Maximization

The EM algorithm repeats the E-step and M-step iteratively until convergence,
typically when the log-likelihood:

log p(X|θ) =
N∑

n=1

log
K∑
k=1

πkN (xn|µk,Σk)

stabilizes.

Which of the following statements is true regarding the convergence properties
of EM?

A. EM always finds the global maximum of the likelihood function.
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B. EM maximizes a lower bound on the likelihood at each iteration, en-
suring non-decreasing likelihood.

C. EM can decrease the likelihood in some iterations.

D. EM requires computing second-order derivatives to estimate parame-
ter updates.

Answer:

(a)

(b)

(c)

(d)

3. Causal Discovery (20 points)

Causal discovery aims to infer causal relationships from observational data, often
using DAGs to represent causality. Consider the following DAG:

X → Z ← Y, X → W → Y

Answer the following questions about this causal structure.

(a) Based on d-separation, are X and Y independent given no observed variables?

(b) Suppose we condition on Z. Are X and Y independent then?

(c) If you want to estimate the causal effect of X on Y , should you adjust for W?
Why or why not?

(d) Suppose an additional variable U is added, where U → X and U → Y . Explain
how U acts as a confounder and how you would adjust for it to estimate the
causal effect of X on Y .

Answer:

(a)

(b)

(c)

(d)
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4. I-Equivalence and Structure Discovery (20 points)

Consider a Bayesian network structure learning problem where we aim to discover
the best graphical representation of a given dataset. The I-equivalence class of a
Bayesian network refers to the set of all graph structures that encode the same set
of conditional independence relationships.

(a) Defining I-Equivalence: Two Bayesian networks are I-equivalent if they rep-
resent the same conditional independence relationships. Given the following two
structures, determine whether they are I-equivalent and explain why.

G1 : A→ B → C, G2 : A← B → C

(b) Learning DAGs vs. Learning I-Equivalence Classes: Explain why learn-
ing the true DAG structure from observational data is harder than learning its
I-equivalence class. What additional information would we need to uniquely
determine the true DAG?

(c) Graph Reversibility in I-Equivalence: Suppose we have two DAGs that
belong to the same I-equivalence class. How can we determine whether we can
reverse an edge direction in one DAG while still preserving the same conditional
independence structure? Provide an example.

(d) Implications for Causal Discovery: If two Bayesian networks are I-equivalent,
does that mean they imply the same causal relationships? Why or why not?

Answer:

(a)

(b)

(c)

(d)

5. Understanding Lower Bounds in Probabilistic Models (20 points)

When training probabilistic models, we often approximate the data likelihood using a
lower bound because directly computing the likelihood is intractable. We can define
a sequence of progressively tighter bounds as follows:

Lk(x) = Ez(1),...,z(k)∼qϕ(z|x)

[
log

1

k

k∑
i=1

pθ(x, z
(i))

qϕ(z(i) | x)

]
.
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(a) Jensen’s Inequality Refresher: Jensen’s inequality states that for a concave
function f(x),

f(E[X]) ≥ E[f(X)].

Show how Jensen’s inequality implies that

log p(x) ≥ Lk(x)

for any k ∈ N. Remember, log(·) is a concave function.

(b) Why More Samples Help: Show that Lk(x) gets tighter as k increases:
Lk+1(x) > Lk(x).

You can use the following lemma without proof:

Lemma: Let Ik ⊂ [k + 1] := {1, . . . , k + 1} with |Ik| = k be a uniformly
distributed subset of distinct indices from [k + 1]. Then for any sequence of
numbers a1, . . . , ak+1,

EIk

[∑
i∈Ik ai

k

]
=

∑k+1
i=1 ai
k + 1

(1)

The above two results show that

log p(x) ≥ Lk+1(x) ≥ Lk(x).

However, the above inequalities do not guarantee Lk(x) → log p(x) when k → ∞.
(The proof is left as an exercise to the reader. Or you can come to my office hours.)

Answer:

(a)

(b)
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6. OPTIONAL Markov Chain Monte Carlo Programming (0 points)

This question is an OPTIONAL programming exercise. It will not impact
your grade.

Nowadays, statistical modeling of sport data has become an important part of sports
analytics and is often a critical reference for the managers in their decision-making
process. In this part, we will work on a real world example in professional sports.
Specifically, we are going to use the data from the 2013-2014 Premier League, the
top-flight English professional league for men’s football clubs, and build a predictive
model on the number of goals scored in a single game by the two opponents. Bayesian
hierarchical model is a good candidate for this kind of modeling task. We model each
team’s strength (both attacking and defending) as latent variables. Then in each
game, the goals scored by the home team is a random variable conditioned on the
attacking strength of the home team and the defending strength of the away team.
Similarly, the goals scored by the away team is a random variable conditioned on
the attack strength of the away team and the defense strength of the home team.
Therefore, the distribution of the scoreline of a specific game is dependent on the
relative strength between the home team A and the away team B, which also depends
on the relative strength between those teams with their other opponents.

Table 1: 2013-2014 Premier League Teams

Index 0 1 2 3 4
Team Arsenal Aston Villa Cardiff City Chelsea Crystal Palace

Index 5 6 7 8 9
Team Everton Fulham Hull City Liverpool Manchester City

Index 10 11 12 13 14
Team Manchester

United
Newcastle
United

Norwich City Southampton Stoke City

Index 15 16 17 18 19
Team Sunderland Swansea City Tottenham

Hotspurs
West Bromwich

Albion
West Ham
United

Here we consider using the same model as described by Baio and Blangiardo (2010).
The Premier League has 20 teams, and we index them as in Table 1. Each team
would play 38 matches every season (playing each of the other 19 teams home and
away), which totals 380 games in the entire season. For the g-th game, assume that
the index of home team is h(g) and the index of the away team is a(g). The observed
number of goals (yg0, yg1) of home and away team is modeled as independent Poisson
random variables:

ygj|θgj ∼ Poisson(θgj), j = 0, 1 (2)
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where θ = (θg0, θg1) represents the scoring intensity in the g-th game for the team
playing at home (j = 0) and away (j = 1), respectively. We put a log-linear model
for the θs:

log θg0 = home+ atth(g) − defa(g) (3)

log θg1 = atta(g) − defh(g) (4)

Note that team strength is broken into attacking and defending strength. And home
represents home-team advantage, and in this model is assumed to be constant across
teams. The prior on the home is a normal distribution:

home ∼ N (0, τ−1
0 ) (5)

where we set the precision τ0 = 0.0001.

The team-specific attacking and defending effects are modeled as:

attt ∼ N (µatt, τ
−1
att ) (6)

deft ∼ N (µdef , τ
−1
def ) (7)

We use conjugate priors as the hyper-priors on the attack and defense means and
precisions:

µatt ∼ N (0, τ−1
1 ) (8)

µdef ∼ N (0, τ−1
1 ) (9)

τatt ∼ Gamma(α, β) (10)

τdef ∼ Gamma(α, β) (11)

where the precision τ1 = 0.0001, and we set parameters α = β = 0.1.

This hierarchical Bayesian model can be represented using a directed acyclic graph
as shown in Figure 1.

The goals of each game are y = {ygj|g = 0, 1, ..., 379, j = 0, 1} are the observed vari-
ables, and parameters θ = {home, att0, def0, ..., att19, def19} and hyper-parameters
η = (µatt, µdef , τatt, τdef ) are unobserved variables that we need to make inference on.
To ensure identifiability, we enforce a corner constraint on the parameters (pinning
one team’s parameters to 0,0). Here we use the first team as reference and assign its
attacking and defending strength to be 0:

att0 = def0 = 0 (12)

In this question, we want to estimate the posterior mean of the attacking and de-
fending strength for each team, i.e. Ep(θ,η|y)[atti], Ep(θ,η|y)[defi], and Ep(θ,η|y)[home].

(a) Find the joint likelihood p(y,θ,η).
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yg0 yg1

θy0 θy1

atta(g) defh(g)home atth(g) defa(g)

τattµatt µdef τdef

Figure 1: The DAG representation of the hierarchical Bayesian model. Figure adapted
from Baio & Blangiardo.

(b) Write down the Metropolis-Hastings algorithm for sampling from posterior p(θ,η|y),
and derive the acceptance function for a proposal distribution of your choice (e.g.
isotropic Gaussian).

(c) Implement the Metropolis-Hastings algorithm to inference the posterior dis-
tribution. The data can be found from https://lengerichlab.github.io/

pgm-spring-2025/assets/hw/hw5/premier_league_2013_2014.dat, which con-
tains a 380×4 matrix. The first column is the number of goals yg0 scored by the
home team, the second column is the number of goals yg1 scored by the away
team, the third column is the index for the home team h(g), and the fourth
column is the index for the away team a(g).

• Use an isotropic Gaussian proposal distribution N (0, σ2I) and use 0.1 as
the starting point.

• Run the MCMC chain for 5000 steps to burn in and then collect 5000 sam-
ples with t steps in between (i.e., run M-H for 5000t steps and collect only
each t-th sample). This is called thinning, which reduces the autocorre-
lation of the MCMC samples introduced by the Markovian process. The
parameter sets are σ = 0.005, 0.05, 0.5, and t = 1, 5, 20, 50.

• Plot the trace plot of the burn in phase and the MCMC samples for the
latent variable home using proposal distributions with different σ and t.

• Estimate the rejection ratio for each parameter setting, report your results
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in a table.

• Comment on the results. Which parameter setting worked the best for the
algorithm?

• Use the results from the optimal parameter setting:

1. plot the posterior histogram of variable home from the MCMC samples.

2. plot the estimated attacking strength Ep(θ,η|y)[atti] against the esti-
mated defending strength Ep(θ,η|y)[defi] for each the team in one scatter
plot. Please make sure to identify the team index of each point on your
scatter plot using the index to team mapping in Table 1.
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