
STAT 479: Study Guide for Quiz

Quiz will be 3 HW questions + 2 of the following:

1. MLE for Exponential Distribution

Suppose we observe data x1, x2, . . . , xn drawn from an exponential distribution with
PDF:

f(x;λ) = λe−λx, x ≥ 0.

(a) Log-Likelihood Function: Which of the following correctly represents the
log-likelihood function ℓ(λ) for this dataset?

A. ℓ(λ) = n log λ− λ
∑n

i=1 xi

B. ℓ(λ) = n log λ+ λ
∑n

i=1 xi

C. ℓ(λ) = n log λ− λ
∏n

i=1 xi

D. ℓ(λ) = nλ− λ
∑n

i=1 xi

(b) Gradient of the Log-Likelihood: What is the gradient of the log-likelihood
ℓ(λ) with respect to λ?

A. ∂ℓ
∂λ

= n
λ
−

∑n
i=1 xi

B. ∂ℓ
∂λ

= n
λ
+
∑n

i=1 xi

C. ∂ℓ
∂λ

= nλ−
∑n

i=1 xi

D. ∂ℓ
∂λ

= λ
∏n

i=1 xi

(c) MLE for λ: Which of the following is the Maximum Likelihood Estimator
(MLE) for λ?

A. λ̂ = n∑n
i=1 xi

B. λ̂ =
∑n

i=1 xi

n

C. λ̂ = n∏n
i=1 xi

D. λ̂ = 1∑n
i=1 xi
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2. HMMs at the Dishonest Casino

Background You are playing a game against a casino that secretly switches be-
tween two types of dice:

• A fair die (F) where each face appears with equal probability.

• A loaded die (L) that is biased toward rolling a six.

Each round, you and the casino both roll a die:

• You always roll a fair six-sided die.

• The casino rolls either a fair or a loaded die.

• The player with the higher number wins. If there is a tie, the casino wins.

The casino follows a Hidden Markov Model (HMM), meaning that while you
see the sequence of rolls, you do not know when the casino switches between the fair
and loaded dice.

Transition and Emission Probabilities The casino follows these transition and
emission probabilities:

• State Transitions:

P (F → F ) = sFF , P (F → L) = sFL = 1− sFF

P (L→ L) = sLL, P (L→ F ) = sLF = 1− sLL

• Emission Probabilities:

– Fair die (F): P (X = k|F ) = 1
6
for all k ∈ {1, 2, 3, 4, 5, 6}.

– Loaded die (L): P (X = 6|L) = 1
2
, while all other faces appear with

probability 1
10
.

• Initial Probabilities:

P (S1 = F ) = πF , P (S1 = L) = πL = 1− πF

Your goal is to ultimately develop an HMM-based strategy to decide when to play
(bet) and when to skip a round to maximize your expected winnings.

(a) Draw the graphical representation of the HMM for this problem. Your diagram
should include:

• Hidden states (St) representing whether the fair or loaded die is in use.

• Observations (Xt) representing the dice rolls.
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(b) Using the Markov assumption (i.e., the probability of a state depends only
on the previous state), write the probability expression for a sequence of two
states and two observations, P (X1, X2, S1, S2).

(c) Express P (S1 = F |X1 = 6, X2 = 6) in terms of the given initial, transition, and
emission probabilities.

(d) Bonus: Suppose at time t = 1 the casino demonstrates to you that the dice
is fair (i.e. P (S1 = F ) = 1, P (S1 = L) = 0). Starting from t = 2, develop
a strategy to decide when to play and when to skip a round. Consider the
following payoffs when designing your strategy:

• If you win the roll, you receive 3 times your bet.

• If the casino wins, you lose your bet.

• You may choose to skip a round and neither gain nor lose anything.

Page 3



STAT 479 Quiz Study Guide

3. Bayesian Network Reasoning

Consider the following Bayesian Network, where A, B, C, and D are random vari-
ables:

A→ B → D, A→ C → D.

The conditional probability tables below describe the relationships in the network,
but their exact numerical values are hidden.

(a) Joint Probability Structure: Suppose we want to compute P (A = 1, B =
1, C = 1, D = 1). Which of the following expressions correctly represents how
this probability should be computed?

A. P (A)P (B|A)P (C|A)P (D|B,C)
B. P (A)P (B)P (C)P (D|B,C)
C. P (A|B,C)P (B|D)P (C|D)P (D)

D. P (A|B)P (B|C)P (C|D)P (D)

(b) Effect of Marginalization: To compute the marginal probability P (D = 1),
which of the following steps is required?

A. Summing over all possible values of A,B, and C in P (A,B,C,D = 1).

B. Multiplying P (A), P (B), and P (C) and then summing over A.

C. Directly using P (D), since it does not depend on other variables.

D. Integrating the probability function over all possible states of A,B,
and C.

(c) Inference and Conditional Probability: If we observe D = 1, which of the
following would most likely increase the probability that A = 1?

A. If P (B = 1|A = 1) and P (C = 1|A = 1) are both high.

B. If P (D = 1|B = 1, C = 1) is very low.

C. If P (A = 1) is independent of P (D).

D. If P (B = 1|A = 1) and P (C = 1|A = 1) are both low.
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4. Conditional vs Joint Models

Let’s consider two different probabilistic models for a categorical outcome Y given
feature variables X = (X1, X2, . . . , Xn).

Model 1 (Conditional Model) The probability of Y given X is modeled as:

P (Y = k|X) =
exp(θTkX)∑
j exp(θ

T
j X)

Model 2 (Joint Model) A joint probability distribution over (Y,X) is defined
using an unnormalized score:

P (Y,X) =
ψ(Y,X)

Z
, where ψ(Y,X) = exp(θTYX)

and Z is the normalization constant.

(a) Derive an explicit expression for Z in Model 2. Over which variables does the
sum run?

(b) Express P (Y |X) in Model 2.

(c) Show that Model 1 can be derived from Model 2 by choosing an appropriate
form of Z.
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5. Conditional Independencies in Directed Graphical Models

Consider the following Bayesian Network:

A B C

D E

(a) Write the joint probability distribution P (A,B,C,D,E) using the factorization
implied by this Bayesian network.

(b) Below are conditional probability tables (CPTs) that specify distributions for
some of the variables. Determine whether these conditional probability tables
(CPTs) are consistent with the structure of the directed graph. If the tables do
not match the graph, explain which independence assumptions are violated.

A B P (B|A) P (A)
0 0 0.6 0.5
0 1 0.4 0.5
1 0 0.3 0.5
1 1 0.7 0.5

B C E P (E|B,C,D)
0 0 0 0.8
0 0 1 0.2
0 1 0 0.5
0 1 1 0.5
1 0 0 0.4
1 0 1 0.6
1 1 0 0.1
1 1 1 0.9
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6. Identifying Cliques and Matching to Data Distributions Consider the fol-
lowing undirected probabilistic graphical model, where nodes represent random vari-
ables, and edges represent direct dependencies between variables:

A B C

D E

(a) Identify all maximal cliques in this graph. Write in the form (x, y, z) if nodes
x, y, z for a maximal clique.

(b) Below is a conditional probability table (CPT) describing joint probabilities of
some of the variables:

B C P (B|C) P (C)
0 0 0.7 0.5
0 1 0.4 0.5
1 0 0.3 0.5
1 1 0.6 0.5

B C E P (E|B,C,D)
0 0 0 0.8
0 0 1 0.2
0 1 0 0.5
0 1 1 0.5
1 0 0 0.4
1 0 1 0.6
1 1 0 0.1
1 1 1 0.9

Table 1: Conditional probability table for E.

Determine whether these conditional probability tables are consistent with the
graphical model. Specifically:

(i) Does the factorization implied by the CPTs respect the independence as-
sumptions of the graph?

(ii) If the tables do not match the graph, identify where the discrepancies occur
and which independence assumptions are violated.
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7. Backpropagation with ℓ2-Regularization

Consider a neural network with one hidden layer. The network’s output is:

ŷ = σ(w2 · h),

where:

• h = σ(w1 · x),
• σ(z) is the sigmoid activation function defined as σ(z) = 1

1+e−z ,

• w1 and w2 are weight vectors,

• x is the input.

The network is trained using an ℓ2-regularized loss function:

Lreg = L+
λ

2

(
∥w1∥22 + ∥w2∥22

)
,

where L is the negative log-likelihood for binary classification:

L = −y log ŷ − (1− y) log(1− ŷ),

and λ > 0 is the regularization strength.

(a) Gradient of Lreg w.r.t. w2: Derive the total gradient of Lreg with respect to
w2. Select the correct expression:

A. (ŷ − y) · h+ λw2

B. (ŷ − y) · h− λw2

C. (ŷ − y) · h
D. (ŷ − y) + λw2

(b) Gradient of Lreg w.r.t. w1: Derive the total gradient of Lreg with respect to
w1. Select the correct expression:

A. (ŷ − y) · w2 · σ′(w1 · x) · x+ λw1

B. (ŷ − y) · σ′(w1 · x) · x+ λw1

C. (ŷ − y) · w2 · σ′(w1 · x) · x
D. (ŷ − y) · σ′(x) · w2 + λw1

(c) Impact of Regularization: Suppose the regularization term is removed (λ =
0). Which of the following best describes the impact on the optimization pro-
cess?

A. The model will fit the training data more closely, potentially overfit-
ting.

B. The model will have higher training error but better generalization.
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C. The gradients with respect to w1 and w2 will increase in magnitude.

D. The optimization will converge more slowly.

(d) Regularization Strength: If λ is increased, what effect will this have on the
learned weights w1 and w2?

A. The weights will shrink, reducing overfitting.

B. The weights will increase, fitting the training data better.

C. The weights will remain unchanged, as λ does not affect the optimiza-
tion.

D. The weights will oscillate during training.
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8. Deriving the Structure and Properties of a Restricted Boltzmann Machine

Consider a probabilistic model with two types of binary random variables:

• Visible variables V = {V1, . . . , Vn}, which represent observed data.

• Hidden variables H = {H1, . . . , Hm}, which encode dependencies between
visible variables.

After analyzing the model, you determine the following structural properties:

1. Each visible variable Vi is connected to some hidden variables Hj.

2. Each hidden variable Hj is connected to some visible variables Vi.

3. No direct connections exist between visible variables.

4. No direct connections exist between hidden variables.

5. The joint probability distribution is defined using an energy function,
rather than conditional probabilities.

(a) Graphical Model Structure: Given the properties above, which of the fol-
lowing best describes the structure of this model?

A. A directed graphical model (Bayesian network) where each hidden
node is a parent of multiple visible nodes.

B. A fully connected undirected graphical model, where every variable
(visible or hidden) is connected to every other variable.

C. A bipartite undirected graphical model, where edges exist only be-
tween visible and hidden nodes, and no edges exist within either
group.

D. A Markov random field with local cliques, where visible variables are
conditionally independent given their neighbors.

(b) Marginal Probability of Visible Units: The joint probability of visible and
hidden units is given by the Boltzmann distribution:

P (V,H) =
1

Z
e−E(V,H)

where the energy function takes the form:

E(V,H) = −
∑
i

biVi −
∑
j

cjHj −
∑
i,j

WijViHj.

Which of the following correctly expresses the marginal probability P (V ) after
summing over all hidden variables?

A. P (V ) =
∑

H P (V,H), summing out hidden variables explicitly.

B. P (V ) ∝ e
∑

i biVi , ignoring the hidden units.
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C. P (V ) ∝
∏

j

(
1 + ecj+

∑
i WijVi

)
e
∑

i biVi .

D. P (V ) ∝ e−
∑

i,j WijViHj , treating the energy function as directly defin-
ing probabilities.

(c) Role of Hidden Units: Why do RBMs allow visible units to have statistical
dependencies, even though there are no direct connections between them?

A. The hidden units introduce shared dependencies, making visible units
conditionally dependent even though they are conditionally in-
dependent given H.

B. The visible units are always independent, since there are no direct
edges between them.

C. The bipartite structure forces visible units to be independent both
marginally and conditionally, meaning RBMs can only model very
simple distributions.

D. The energy function forces every visible unit to depend only on itself,
meaning hidden units have no real effect.
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