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Logistics Review
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• Class webpage: lengerichlab.github.io/pgm-spring-2025
• Lecture scribe sign-up sheet
• Readings: Canvas
• Class Announcements: Canvas
• Assignment Submissions: Canvas
• Instructor: Ben Lengerich

• Office Hours: Thursday 2:30-3:30pm, 7278 Medical Sciences Center
• Email: lengerich@wisc.edu

• TA: Chenyang Jiang
• Office Hours: Monday 11am-12pm, 1219 Medical Sciences Center
• Email: cjiang77@wisc.edu

lengerichlab.github.io/pgm-spring-2025
https://docs.google.com/spreadsheets/d/1-Mj0MwkSxidVe-HfnMZyUIk4N8cwMeuGzEYTrgDjKqk/edit?gid=0
mailto:cjiang77@wisc.edu


Homework 1
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• Released, due next Friday at midnight.
• PDF and Latex solution template (.tex) available on website.

• Submit via Canvas.
• Most preferred format: 

• PDF with your solution written in the provided solution box using Latex.

• Questions – Ask early and often



Questions about Course Logistics?



Statistics Review



Today
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• Probability Basics
• Estimation Methods
• Linear Regression
• Optimization



Probability Basics



Probability Basics: Definitions
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• Random Variables:
• Discrete: Values from a countable set (e.g. a coin flip)
• Continuous: Values from an interval (e.g. a height)

• PMF and PDF:
• Probability Mass Function: P(X=x) for discrete X.
• Probability Density Function: f(x) for continuous X.



Key Distributions
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• Bernoulli Distribution:
• 𝑃 𝑋 = 𝑥 = 𝜃! 1 − 𝜃 "#! , 𝑥 ∈ {0,1}
• Example: a fair coin flip (𝜃 = 0.5)

• Gaussian Distribution:

• 𝑓 𝑥 = "
√%&'!

𝑒
"#$ !

!%!

• “Normal” because of Central Limit Theorem
• “Standard Normal” when 𝜇 = 0, 𝜎 = 1



Central Limit Theorem

• Let 𝑋!, 𝑋", … , 𝑋#be i.i.d. random variables with mean 𝜇 and 
variance 𝜎".
• Define the sample mean:

&𝑋# =
1
𝑛
*
$%!

#

𝑋$

• Then, as 𝑛 → ∞:
&𝑋# − 𝜇
𝜎
𝑛

→ 𝑁(0, 1)



Joint, Marginal, and Conditional Probabilities
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• Joint: 𝑃(𝐴, 𝐵), probability of two events occurring together.
• Marginal: 𝑃 𝐴 = ∑& 𝑃(𝐴, 𝐵), sum of joint probabilities over one 

variable.

• Conditional: 𝑃 𝐴 𝐵 = '(),&)
'(&)

, probability of A given B.



Expectation and Variance

Ben Lengerich © University of Wisconsin-Madison 2025

• Expectation:
• Discrete: 𝐸 𝑋 = ∑! 𝑥𝑃(𝑋 = 𝑥)
• Continuous: 𝐸 𝑋 = ∫ 𝑥𝑓 𝑥 𝑑𝑥

• Variance: V𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 "

• Equivalent: V𝑎𝑟 𝑋 = 𝐸 𝑋% − 𝐸 𝑋 %



Linearity of Expectation
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• Property:
• 𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

• Multiple Variables:
• 𝐸 𝑋" + 𝑋% = 𝐸 𝑋" + 𝐸 𝑋%



Expectation of Functions
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• Formula:
• 𝐸 𝑔 𝑋 = ∑! 𝑔 𝑥 𝑃(𝑋 = 𝑥) (discrete)
• 𝐸 𝑔 𝑋 = ∫! 𝑔 𝑥 𝑓 𝑥 𝑑𝑥 (continuous)

• Example (Discrete):
• 𝑋 ∼ Bernoulli 𝜃 , 𝑔 𝑋 = 𝑋%:
• 𝐸 𝑔 𝑋 = 1%𝜃 + 0% 1 − 𝜃 = 𝜃

• Example (Continuous):
• 𝑋 ∼ Uniform 0,1 , 𝑔 𝑋 = 𝑋%:
• 𝐸 𝑔 𝑋 = ∫(

" 𝑥%𝑑𝑥 = "
)
.



Variance of Functions
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• Definition:
• 𝑉𝑎𝑟 𝑔 𝑋 = 𝐸[ 𝑔 𝑋 − 𝐸 𝑔 𝑋 %]
• Equivalent: 𝑉𝑎𝑟 𝑔 𝑋 = 𝐸 𝑔 𝑋 % − 𝐸 𝑔 𝑋 %



Covariance and Correlation
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• Covariance:
• 𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸[ 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌 ]

• Properties:
• 𝐶𝑜𝑣 𝑋, 𝑋 = 𝑉𝑎𝑟(𝑋)
• If X,Y are independent: 𝐶𝑜𝑣 𝑋, 𝑌 = 0.

• Correlation:
• 𝜌 𝑋, 𝑌 = *+, -,/

012 - 012(/)

• 𝜌 = 1: Perfect positive linear relationship.
• 𝜌 = 0: No linear relationship.
• 𝜌 = −1: Perfect negative linear relationship.



Bayes’ Rule
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• 𝑃 𝐴 𝐵 = ' 𝐵 𝐴 '())
' &

• Example: Medical test:
• 𝑃 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡 = 5 6+7898,: 9:79 ;87:17:) 5(;87:17:)

5 6+7898,: 9:79



Estimation Methods



Introduction to Estimation

• Goal of Estimation:
• Infer unknown parameters θ from observed data.

• Types of Estimation:
• Point Estimation: Single value (e.g., MLE).
• Interval Estimation: Range of plausible values (e.g., confidence intervals).

• Common Methods:
• Maximum Likelihood Estimation (MLE)
• Maximum A Posteriori (MAP)
• Method of Moments



Maximum Likelihood Estimation (MLE)
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• Definition:
• Find X𝜽 that maximizes the likelihood of observing the given data.

!𝜽 = argmax!𝐿 𝜃 where 𝐿 𝜃 = 𝑃 data 𝜃 . 
• Interpretation:

• L(θ): Probability of the observed data given θ.
• MLE chooses the parameter that makes the data most "likely."

𝐿(𝜃)

&𝜃&'(

𝜃



Maximum Likelihood Estimation (MLE)
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• Example:
• Dataset: X={1,0,1,1,0},
• Bernoulli distribution with 𝑃 𝑋 = 1 𝜃 = 𝜃:

𝐿 𝜃 =[
8

𝜃!) 1 − 𝜃 "#!)

• Typically solved by maximizing the log-likelihood.
ℓ 𝜃 = log 𝐿(𝜃) = ∑8<"= 𝑥8 log 𝜃 + 1 − 𝑥8 log(1 − 𝜃)

• Derivative:
𝑑ℓ
𝑑𝜃

=
𝑘
𝜃
−
𝑛 − 𝑘
1 − 𝜃

where 𝑘 = ∑𝑥8
• Solution:

X𝜽 =
𝑘
𝑛



Maximum Likelihood Estimation (MLE)
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• The MLE:
• does not always exist.
• is not necessarily unique.
• is not necessarily admissible.



Maximum A Posteriori (MAP) Estimation
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• Find
:𝜃,)' = 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 𝜃 data) ∝ 𝑎𝑟𝑔𝑚𝑎𝑥-𝑃 data 𝜃 𝑃(𝜃)

• 𝑃 data 𝜃 : Likelihood
• 𝑃(𝜃): Prior belief about 𝜃

• MLE ignores 𝑃 𝜃
• MAP incorporates prior information.
𝐿(𝜃)

𝜃

&𝜃&'(

P(𝜃|data)

&𝜃&*+

𝜃



Regularization is MAP
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• MLE with Regularization:
• Adds a penalty to avoid overfitting

.𝜽𝒓𝒆𝒈 = argmax![log 𝐿 𝜃 − 𝜆𝑅 𝜃 ]

• MAP as Penalized MLE:
• Let 𝑃 𝜃 ∝ 𝑒#>?(@). Then

X𝜽AB5 = 𝑎𝑟𝑔𝑚𝑎𝑥@[log 𝐿 𝜃 + log𝑃 𝜃 ] = b𝜃2:C

𝐿(𝜃)

&𝜃&'(

𝜃



Method of Moments
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• Definition:
• Match sample moments to theoretical moments (𝐸[𝑋=]) to estimate 

parameters.

• Example:
• Bernoulli: 

• 𝐸 𝑋 = 𝜃, estimate %𝜽 = '𝑋.
• Gaussian:

• 𝐸 𝑋 = 𝜇.
• 𝑉𝑎𝑟 𝑋 = 𝜎%



Linear Regression



Introduction to Linear Regression
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• Model Definition:
• 𝑦 = 𝑋𝛽 + 𝜖, where
• y: Response variable (dependent variable).
• X: Design matrix (independent variables or features).
• 𝛽: Coefficients (parameters to estimate).
• ϵ: Error term (often assumed to be 𝑁(0, 𝜎%).

• Goal:
• Estimate 𝛽.



Linear Regression Evaluation Metrics

Ben Lengerich © University of Wisconsin-Madison 2025

• Coefficient of Determination (𝑹𝟐):
• 𝑅% = 1 − DD,-.)/012

DD34312
• Measures the proportion of variance explained by the model.

• Mean Squared Error (MSE):
• 𝑀𝑆𝐸 = "

=
∑ 𝑦8 − j𝑦8 %

• Mean Absolute Error (MAE):
• 𝑀𝑆𝐸 = "

=
∑‖𝑦8 − j𝑦8‖



Ordinary Least Squares (OLS)
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• Objective:
• Minimize the sum of squared residuals:
• X𝜷EFD = 𝑎𝑟𝑔𝑚𝑖𝑛G 𝑦 − 𝑋𝛽 %

• Residuals:
• 𝑒8 = 𝑦8 − j𝑦8

• Solution:
• X𝜷EFD = 𝑋H𝑋 #"𝑋H𝑌



Regularization in Linear Regression (MAP)
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• Ridge Regression (L2 Regularization):
• Adds an L2 penalty:

• %𝜷28;C: = 𝑎𝑟𝑔𝑚𝑖𝑛G 𝑦 − 𝑋𝛽 % + 𝜆 𝛽 %

• Equivalent MAP interpretation:

• Prior on coefficients: 𝛽 ∼ 𝑁(0, '
!

>
)

• MAP estimate maximizes: P(β∣y)∝P(y∣β)P(β)
• Penalty comes from the Gaussian prior.

• Lasso Regression (L1 Regularization):
• Adds an L1 penalty:

• %𝜷I177+ = 𝑎𝑟𝑔𝑚𝑖𝑛G 𝑦 − 𝑋𝛽 % + 𝜆 𝛽 "

• Equivalent to 𝛽 ∼ Laplace(0, '
>
)



Extensions of Linear Regression
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• Polynomial Regression:
• Add polynomial terms:
• 𝑦 = 𝛽( + 𝛽"𝑥 + 𝛽%𝑥% + …

• Generalized Linear Models:
• Extend to non-normal distributions by a link function:
• 𝑔 𝐸 𝑌 = 𝑋𝛽

• Interaction Terms:
• Include interactions between predictors:
• 𝑦 = 𝛽( + 𝛽"𝑥" + 𝛽%𝑥% + 𝛽)𝑥"𝑥%



A word of warning on interpreting interactions…
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• Suppose we have data from:
𝑌 = 𝐴𝑁𝐷 𝑋!, 𝑋"

• with Boolean X. Let’s fit an 
additive model (no 
interactions):
• F𝑌 = 𝑓/ + 𝑓! 𝑋! + 𝑓"(𝑋")
• How well can we fit the data?



Optimization



Convexity
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Convexity Aids Optimization
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But…
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- Yann LeCun, “Who’s afraid of Non-convex loss functions?” – 2007

https://cs.nyu.edu/~yann/talks/lecun-20071207-nonconvex.pdf


Questions?


