Probabilistic Graphical Models & Probabilistic Al

Ben Lengerich

Lecture 2: Statistics Review January 23, 2025

Reading: See course homepage

Logistics Review

- Class webpage: lengerichlab.github.io/pgm-spring-2025
- Lecture scribe sign-up sheet
- Readings: Canvas
- Class Announcements: Canvas
- Assignment Submissions: **Canvas**
- Instructor: Ben Lengerich
 - Office Hours: Thursday 2:30–3:30pm, 7278 Medical Sciences Center
 - Email: lengerich@wisc.edu

• TA: Chenyang Jiang

- Office Hours: Monday 11am-12pm, 1219 Medical Sciences Center
- Email: <u>cjiang77@wisc.edu</u>

Homework 1

- Released, due next Friday at midnight.
 - PDF and Latex solution template (.tex) available on website.
- Submit via **Canvas**.
- Most preferred format:
 - PDF with your solution written in the provided solution box using Latex.
- Questions Ask early and often

```
\begin{solution}
Write your solution here. For multiple choice
questions, only the letter answer is required.
\begin{parts}
    \part Solution for (a)
    \part Solution for (b)
    \part Solution for (c)
    \part Solution for (d)
\end{parts}
\end{solution}
```

Answer: Write your solution here.	
(a) Solution for (a)	
(b) Solution for (b)	
(c) Solution for (c)	
(d) Solution for (d)	

Questions about Course Logistics?

Statistics Review

Ŵ

Today

- Probability Basics
- Estimation Methods
- Linear Regression
- Optimization

Probability Basics

Probability Basics: Definitions

- Random Variables:
 - Discrete: Values from a countable set (e.g. a coin flip)
 - Continuous: Values from an interval (e.g. a height)
- PMF and PDF:
 - **P**robability **M**ass **F**unction: P(X=x) for discrete X.
 - **P**robability **D**ensity **F**unction: f(x) for continuous X.

Key Distributions

- Bernoulli Distribution:
 - $P(X = x) = \theta^{x} (1 \theta)^{1 x}, x \in \{0, 1\}$
 - Example: a fair coin flip ($\theta = 0.5$)
- Gaussian Distribution:

•
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

- "Normal" because of Central Limit Theorem
- "Standard Normal" when $\mu = 0, \sigma = 1$

Central Limit Theorem

- Let X_1, X_2, \dots, X_n be i.i.d. random variables with mean μ and variance σ^2 .
- Define the sample mean:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• Then, as $n \rightarrow \infty$:

$$\frac{\overline{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \to N(0, 1)$$

Joint, Marginal, and Conditional Probabilities

- Joint: *P*(*A*, *B*), probability of two events occurring together.
- Marginal: $P(A) = \sum_{B} P(A, B)$, sum of joint probabilities over one variable.
- Conditional: $P(A|B) = \frac{P(A,B)}{P(B)}$, probability of A given B.

Expectation and Variance

- Expectation:
 - Discrete: $E[X] = \sum_{x} x P(X = x)$
 - Continuous: $E[X] = \int x f(x) dx$
- Variance: $Var(X) = E[(X E[X])^2]$
 - Equivalent: $Var(X) = E[X^2] E[X]^2$

Linearity of Expectation

- Property:
 - E[aX + b] = aE[X] + b
- Multiple Variables:
 - $E[X_1 + X_2] = E[X_1] + E[X_2]$

Expectation of Functions

- Formula:
 - $E[g(X)] = \sum_{x} g(x)P(X = x)$ (discrete)
 - $E[g(X)] = \int_{x} g(x)f(x)dx$ (continuous)
- Example (Discrete):
 - $X \sim \text{Bernoulli}(\theta), g(X) = X^2$:
 - $E[g(X)] = 1^2\theta + 0^2(1-\theta) = \theta$
- Example (Continuous):
 - $X \sim \text{Uniform}(0,1), g(X) = X^2$:
 - $E[g(X)] = \int_0^1 x^2 dx = \frac{1}{3}.$

Variance of Functions

- Definition:
 - $Var(g(X)) = E[(g(X) E[g(X)])^2]$
 - Equivalent: $Var(g(X)) = E[g(X)^2] (E[g(X)])^2$

Covariance and Correlation

- Covariance:
 - Cov(X,Y) = E[(X E[X])(Y E[Y])]
- Properties:
 - Cov(X, X) = Var(X)
 - If X,Y are independent: Cov(X,Y) = 0.
- Correlation:

•
$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

- $\rho = 1$: Perfect positive linear relationship.
- $\rho = 0$: No linear relationship.
- $\rho = -1$: Perfect negative linear relationship.

Bayes' Rule

- $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$
- Example: Medical test:
 - $P(disease|positive test) = \frac{P(positive test | disease) P(disease)}{P(positive test)}$

Estimation Methods

Introduction to Estimation

Goal of Estimation:

• Infer unknown parameters $\boldsymbol{\theta}$ from observed data.

• Types of Estimation:

- Point Estimation: Single value (e.g., MLE).
- Interval Estimation: Range of plausible values (e.g., confidence intervals).

Common Methods:

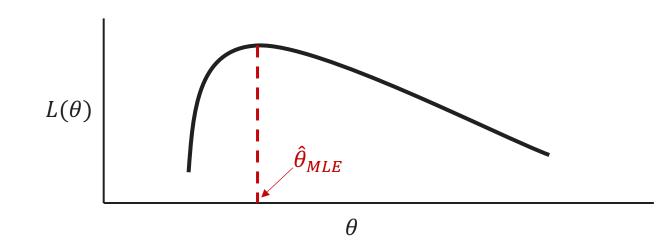
- Maximum Likelihood Estimation (MLE)
- Maximum A Posteriori (MAP)
- Method of Moments

Maximum Likelihood Estimation (MLE)

- Definition:
 - Find $\hat{\theta}$ that maximizes the likelihood of observing the given data. $\hat{\theta} = \operatorname{argmax}_{\theta} L(\theta)$ where $L(\theta) = P(\operatorname{data}|\theta)$.

Interpretation:

- $L(\theta)$: Probability of the observed data given θ .
- MLE chooses the parameter that makes the data most "likely."



Maximum Likelihood Estimation (MLE)

• Example:

- Dataset: X={1,0,1,1,0},
- Bernoulli distribution with $P(X = 1|\theta) = \theta$:

$$L(\theta) = \prod_{i} \theta^{x_i} (1 - \theta)^{1 - x_i}$$

- Typically solved by maximizing the log-likelihood. $\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} (x_i \log \theta + (1 - x_i) \log(1 - \theta))$
- Derivative:

$$\frac{d\ell}{d\theta} = \frac{k}{\theta} - \frac{n-k}{1-\theta}$$

where $k = \sum x_i$

• Solution:

$$\widehat{\boldsymbol{\theta}} = \frac{k}{n}$$

Maximum Likelihood Estimation (MLE)

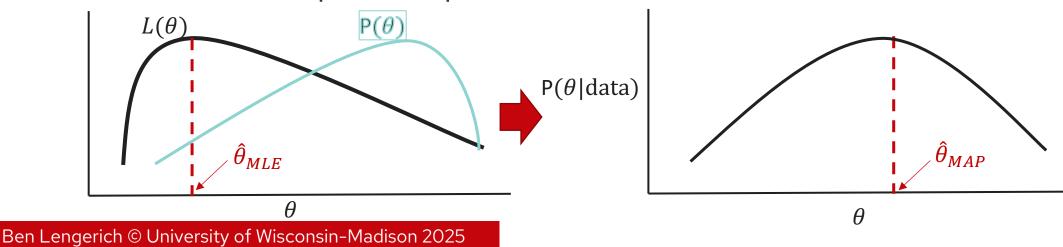
- The MLE:
 - does not always exist.
 - is not necessarily unique.
 - is not necessarily admissible.

Maximum A Posteriori (MAP) Estimation

• Find

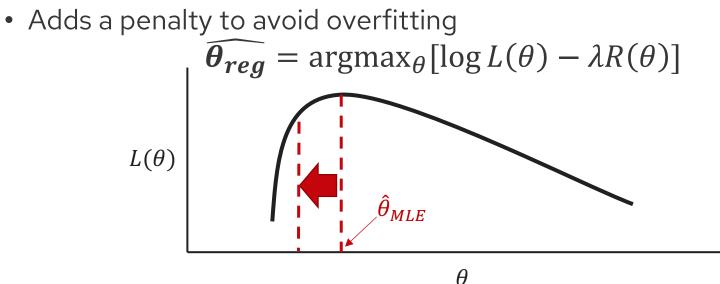
 $\hat{\theta}_{MAP} = argmax_{\theta} P(\theta | data) \propto argmax_{\theta} P(data | \theta) P(\theta)$

- $P(\text{data}|\theta)$: Likelihood
- $P(\theta)$: Prior belief about θ
- MLE ignores $P(\theta)$
- MAP incorporates prior information.



Regularization is MAP

MLE with Regularization:



MAP as Penalized MLE:

• Let
$$P(\theta) \propto e^{-\lambda R(\theta)}$$
. Then
 $\widehat{\theta}_{MAP} = argmax_{\theta}[\log L(\theta) + \log P(\theta)] = \widehat{\theta}_{reg}$

Method of Moments

• Definition:

• Match sample moments to theoretical moments ($E[X^n]$) to estimate parameters.

• Example:

- Bernoulli:
 - $E[X] = \theta$, estimate $\widehat{\theta} = \overline{X}$.
- Gaussian:

•
$$E[X] = \mu$$
.

• $Var(X) = \sigma^2$

Linear Regression

Introduction to Linear Regression

Model Definition:

- $y = X\beta + \epsilon$, where
- y: Response variable (dependent variable).
- X: Design matrix (independent variables or features).
- β : Coefficients (parameters to estimate).
- ϵ : Error term (often assumed to be $N(0, \sigma^2)$.

• Goal:

• Estimate β .

Linear Regression Evaluation Metrics

- Coefficient of Determination (R²):
 - $R^2 = 1 \frac{SS_{residual}}{SS_{total}}$
 - Measures the proportion of variance explained by the model.
- Mean Squared Error (MSE):

•
$$MSE = \frac{1}{n} \sum (y_i - \hat{y}_i)^2$$

Mean Absolute Error (MAE):

•
$$MSE = \frac{1}{n} \sum \|y_i - \widehat{y}_i\|$$

Ordinary Least Squares (OLS)

• Objective:

- Minimize the sum of squared residuals:
- $\widehat{\boldsymbol{\beta}}_{OLS} = argmin_{\beta} \|y X\beta\|^2$
- Residuals:

•
$$e_i = y_i - \widehat{y}_i$$

- Solution:
 - $\widehat{\boldsymbol{\beta}}_{OLS} = (X^T X)^{-1} X^T Y$

Regularization in Linear Regression (MAP)

• Ridge Regression (L2 Regularization):

- Adds an L2 penalty:
 - $\widehat{\boldsymbol{\beta}}_{ridge} = argmin_{\beta} \|y X\beta\|^2 + \lambda \|\beta\|^2$
- Equivalent MAP interpretation:
 - Prior on coefficients: $\beta \sim N(0, \frac{\sigma^2}{\lambda})$
 - MAP estimate maximizes: $P(\beta|y) \propto P(y|\beta)P(\beta)$
 - Penalty comes from the Gaussian prior.

Lasso Regression (L1 Regularization):

- Adds an L1 penalty:
 - $\widehat{\boldsymbol{\beta}}_{lasso} = argmin_{\beta} \|y X\beta\|^2 + \lambda \|\beta\|_1$
- Equivalent to $\beta \sim \text{Laplace}(0, \frac{\sigma}{\lambda})$

Extensions of Linear Regression

Polynomial Regression:

- Add polynomial terms:
- $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots$

Generalized Linear Models:

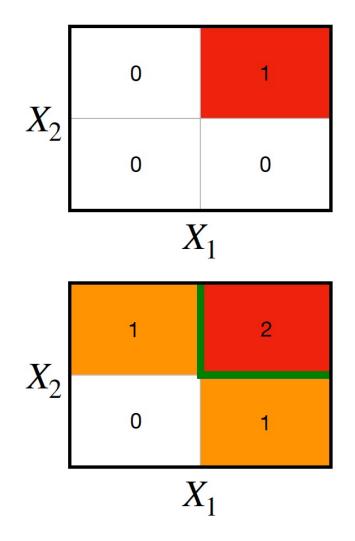
- Extend to non-normal distributions by a link function:
- $g(E[Y]) = X\beta$

Interaction Terms:

- Include interactions between predictors:
- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$

A word of warning on interpreting interactions...

- Suppose we have data from: $Y = AND(X_1, X_2)$
- with Boolean X. Let's fit an additive model (no interactions):
- $\hat{Y} = f_0 + f_1(X_1) + f_2(X_2)$
- How well can we fit the data?



Optimization

The second secon

Convexity

Convex function

 $\forall \lambda \in [0, 1], \qquad f(\lambda \mathbf{x} + (1 - \lambda) \mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{y})$

Strictly convex function

$$\forall \lambda \in]0,1[, \quad f(\lambda \mathbf{x} + (1-\lambda) \mathbf{y}) < \lambda f(\mathbf{x}) + (1-\lambda) f(\mathbf{y})$$

Strongly convex function

$$\exists \mu > 0, \text{ s.t. } \mathbf{x} \mapsto f(\mathbf{x}) - \mu \|\mathbf{x}\|^2 \text{ is convex}$$

Equivalently:

$$\forall \lambda \in [0,1], \quad f(\lambda \, \mathbf{x} + (1-\lambda) \, \boldsymbol{y}) \leq \lambda \, f(\mathbf{x}) + (1-\lambda) \, f(\boldsymbol{y}) - \mu \, \lambda (1-\lambda) \| \mathbf{x} - \boldsymbol{y} \|^2$$

The largest possible μ is called the strong convexity constant.

Ben Lengerich © University of Wisconsin-Madison 2025

Convexity Aids Optimization

If f is convex and differentiable at \mathbf{x} then

 $f(\boldsymbol{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\boldsymbol{y} - \mathbf{x})$

Convex function

All local minima are global minima.

Strictly convex function

If there is a local minimum, then it is unique and global.

Strongly convex function

There exists a unique local minimum which is also global.

But **Convexity is Overrated** Using a suitable architecture (even if it leads to non-convex loss functions) is more important than insisting on convexity (particularly if it restricts us to unsuitable architectures) e.g.: Shallow (convex) classifiers versus Deep (non-convex) classifiers Even for shallow/convex architecture, such as SVM, using nonconvex loss functions actually improves the accuracy and speed See "trading convexity for efficiency" by Collobert, Bottou, and Weston, ICML 2006 (best paper award) - Yann LeCun, "Who's afraid of Non-convex loss functions?" - 2007

Ben Lengerich © University of Wisconsin-Madison 2025

Questions?

