Probabilistic Graphical Models & Probabilistic Al

Ben Lengerich

Lecture 3: A Linear view of Discriminative and Generative Models January 28, 2025

Reading: See course homepage

Logistics Review

- Lecture scribe sign-up sheet
- Instructor: Ben Lengerich
 - Office Hours: **Thursday 3:30-4:30pm**, 7278 Medical Sciences Center
 - Email: lengerich@wisc.edu
- TA: Chenyang Jiang
 - Office Hours: Monday 11am-12pm, 1219 Medical Sciences Center
 - Email: cjiang77@wisc.edu

Ŵ

Homework 1

- Due Friday at midnight.
- Submit via **Canvas**.
- How is it going?

Questions about Course Logistics?

Today

- Introduction to LaTeX
- Discriminative vs Generative Models:
 - Logistic Regression (Discriminative)
 - Naïve Bayes (Generative)

Introduction to LaTeX

What is LaTeX?

- LaTeX is a document preparation system and markup language used to create high-quality documents
- Key ideas:
 - Separation of content and formatting.
 - Not WYSIWYG (like Word); instead uses a language for precise design.
- Implications:
 - Handles complex layouts like tables, equations, and citations seamlessly.
 - Some upfront work, but no fighting the system for layout.

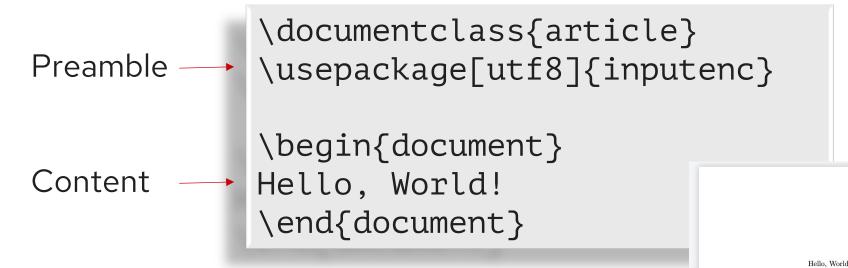
<pre>\begin{solution} Write your solution here. For multiple choice questions, only the letter answer is required. \begin{parts} \part Solution for (a) \part Solution for (b) \part Solution for (c) \part Solution for (d) \end{parts} \end{solution}</pre>	 Answer: Write your solution here. (a) Solution for (a) (b) Solution for (b) (c) Solution for (c) (d) Solution for (d)
---	---

Why use LaTeX?

- **Professional Output**: Superior typesetting for academic papers, theses, and technical reports.
- Handles Complexities: Math formulas, bibliographies, and cross-referencing are simple and accurate.
- Automation: Automatically generates tables of contents, indices, and citations.
- **Reproducibility**: Documents look consistent regardless of the platform.

Basics of a LaTex document

• Minimal example of a LaTeX document:



Essential Commands

Text Formatting:

- Bold: \textbf{bold text}
- Italics: \textit{italic text}
- Underline: \underline{text}

• Lists:

```
\begin{itemize}
   \item Item 1
   \item Item 2
\end{itemize}
```

Math in LaTeX

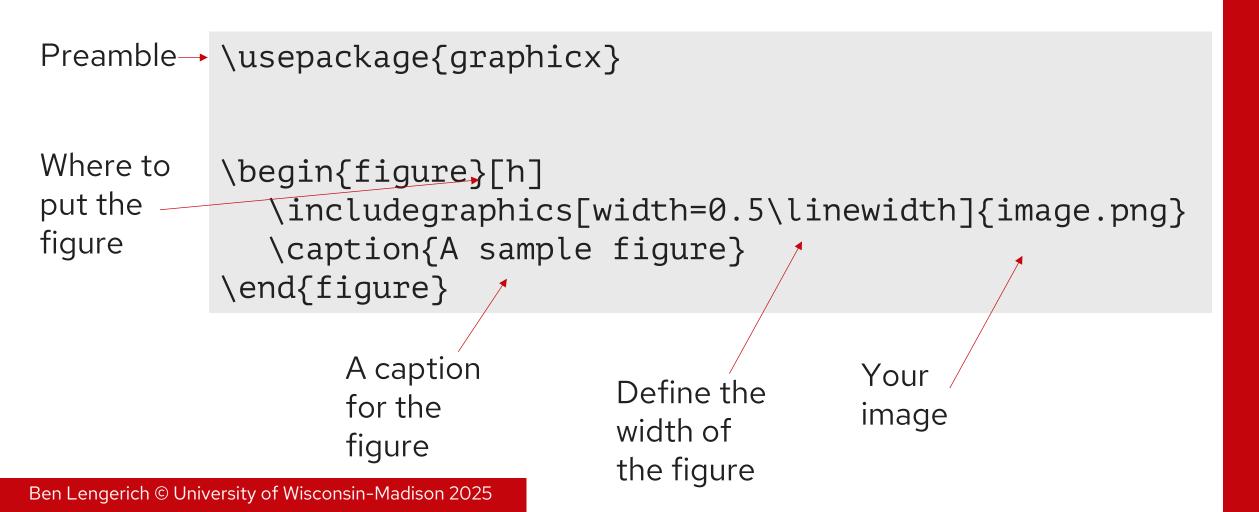
In-line math:

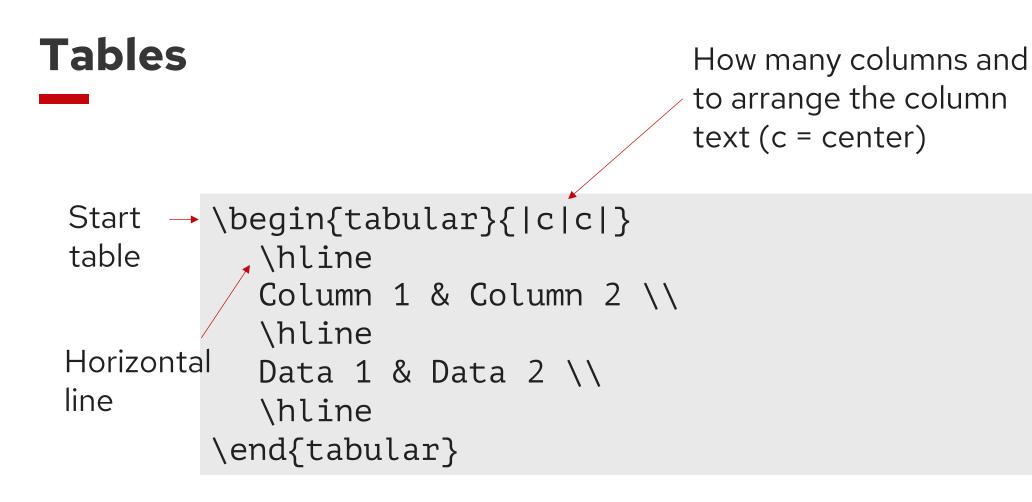
• Single \$ to start/end math environment: \$E = mc^2\$

• Block math:

\[E = mc^2 \]

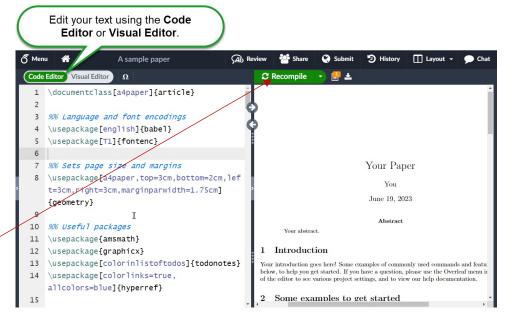
Figures





Where to use LaTeX

- I recommend Overleaf
 - Live collaboration tools
 - Integrates with Dropbox, etc for automatic backups
- Also possible to use local editors: TeXShop, MikTeX, TeXworks
- Workflow:
 - Write LaTeX code.
 - Compile:
 - Use the "Recompile" button on Overleaf
 - Use pdflatex or xelatex locally.
 - View and iterate on the generated PDF.



Resources

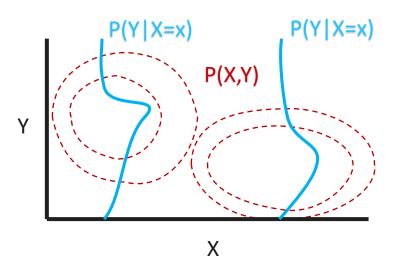
- Overleaf Tutorials
- LaTeX Wikibook
- <u>TeX Stack Exchange</u> for Q&A.

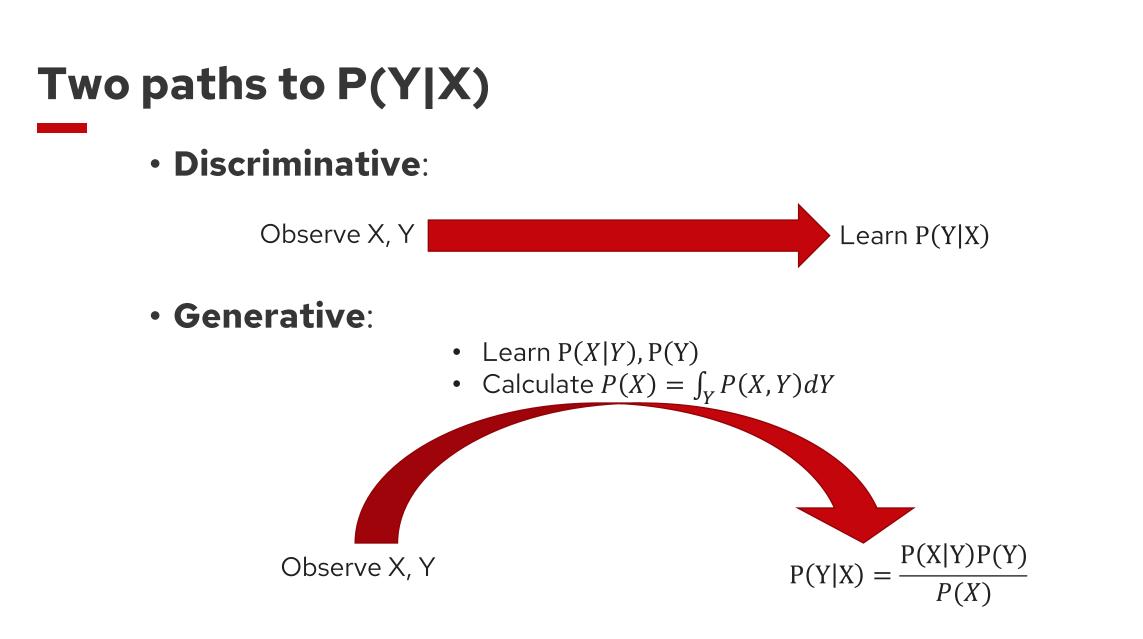
Questions about LaTeX?

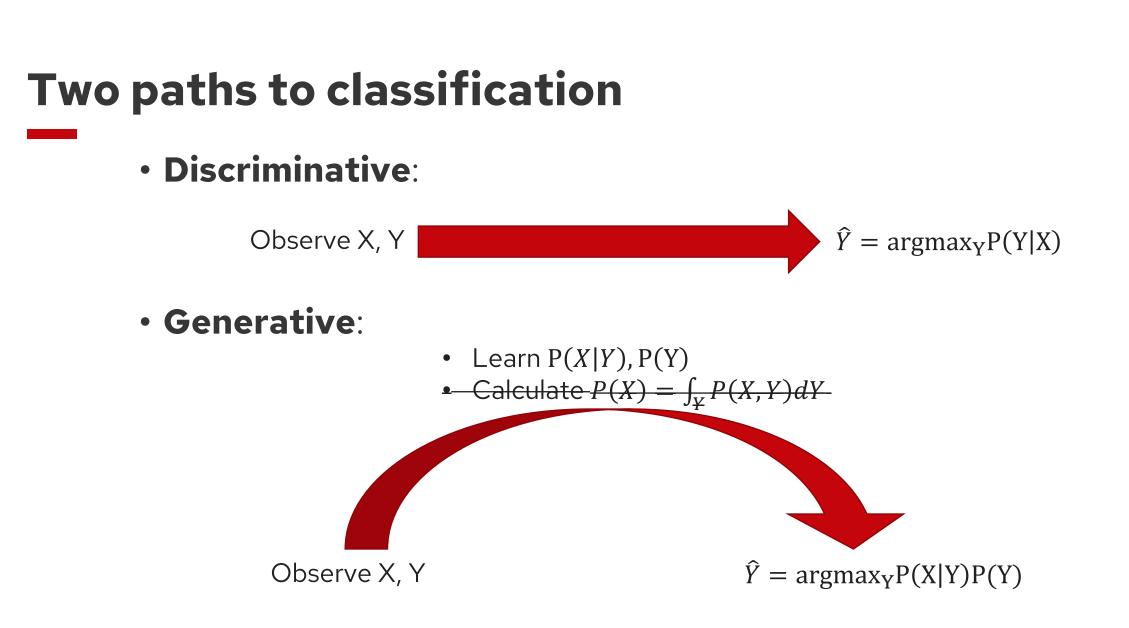
A Linear View of Discriminative and Generative Models

Generative and Discriminative Models

- Generative:
 - Models the joint distribution P(X, Y).
- Discriminative:
 - Models the conditional distribution P(Y|X).







Example Discriminative Model: Logistic Regression

- Parameterize:
 - $P(Y = 1|X) = \sigma(\theta^T X)$, where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the sigmoid function.
 - P(Y = 0|X) = 1 P(Y = 1|X)
 - Why this parameterization?

$$\log \frac{P(Y = 1|X)}{P(Y = 0|X)} = \log \frac{\sigma(\theta^T X)}{1 - \sigma(\theta^T X)}$$
$$= \log \frac{\frac{1}{1 + e^{-\theta^T X}}}{1 - \frac{1}{1 + e^{-\theta^T X}}} = \log \frac{\frac{1}{1 + e^{-\theta^T X}}}{\frac{(1 + e^{-\theta^T X}) - 1}{1 + e^{-\theta^T X}}} = \log \frac{\frac{1}{1 + e^{-\theta^T X}}}{\frac{1 + e^{-\theta^T X}}{1 + e^{-\theta^T X}}}$$
$$= \log \frac{1}{e^{-\theta^T X}} = \log e^{\theta^T X} = \theta^T X$$

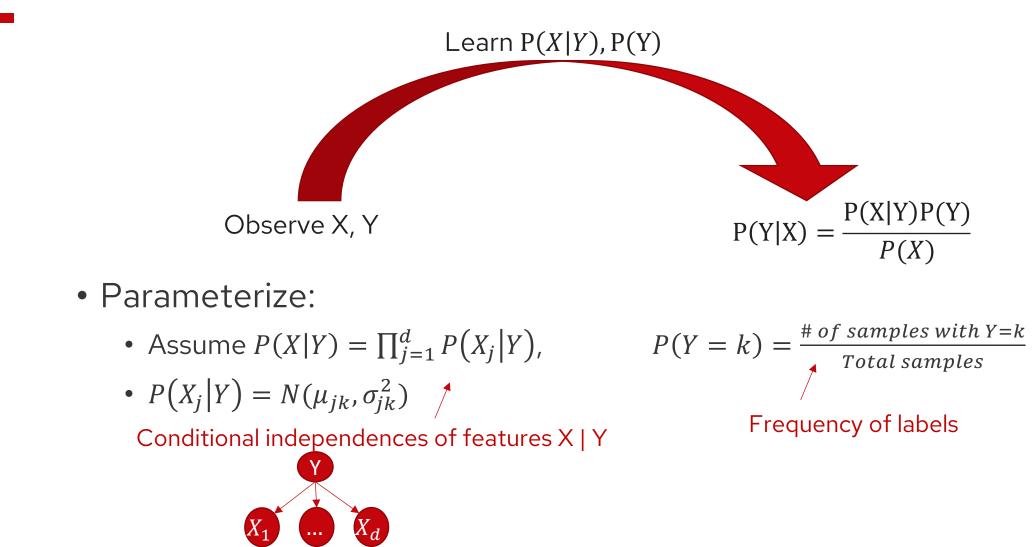
Example Discriminative Model: Logistic Regression

- Parameterize:
 - $P(Y = 1|X) = \sigma(\theta^T X)$, where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the sigmoid function.

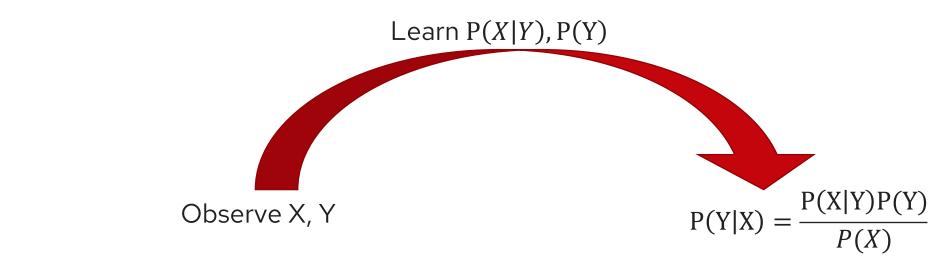
•
$$P(Y = 0|X) = 1 - P(Y = 1|X)$$

- Estimate $\hat{\theta}$ from observations:
 - $\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{i} P(Y_i | X_i; \theta)$ = $\operatorname{argmax}_{\theta} \sum_{i} [Y_i \log \sigma(\theta^T X_i) + (1 - Y_i) \log(1 - \sigma(\theta^T X_i))]$
- Calculate $P(Y = 1|X) = \sigma(\theta^T X)$

Example Generative Model: Naïve Bayes



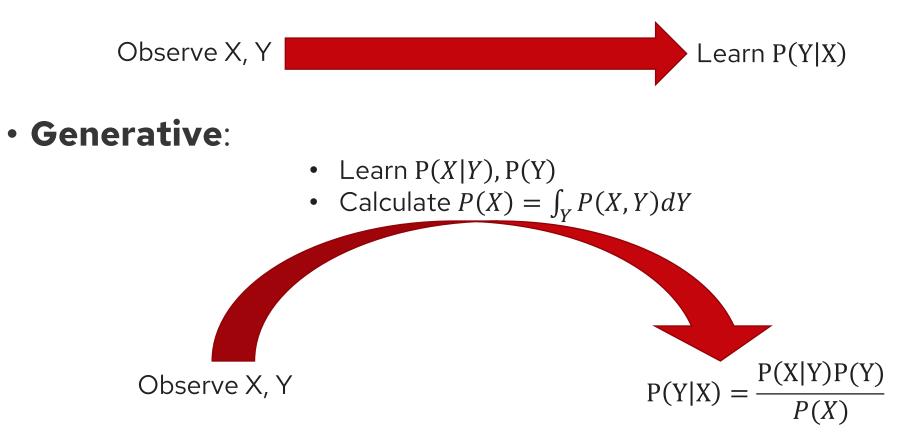
Example Generative Model: Naïve Bayes



- Parameterize:
 - Assume $P(X|Y) = \prod_{j=1}^{d} P(X_j|Y)$, $P(Y = k) = \frac{\# of samples with Y = k}{Total samples}$
- Estimate:
 - $\hat{\mu}, \hat{\sigma} = \operatorname{argmax}_{\mu,\sigma} P(X|Y)$

• Calculate
$$P(Y = 1|X) = \frac{\prod_{j=1}^{d} P(X_j | Y = 1) P(Y=1)}{P(X)}$$

• Discriminative:



• Parameterize:

•
$$P(Y = 1|X) = \sigma(\theta^T X)$$
, where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the sigmoid function.

•
$$P(Y = 0|X) = 1 - P(Y = 1|X)$$

- Estimate $\hat{\theta}$ from observations:
 - $\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{i} P(Y_{i}|X_{i};\theta) P(\theta)$ = $\operatorname{argmax}_{\theta} \sum_{i} [Y_{i} \log \sigma(\theta^{T}X_{i}) + (1 - Y_{i}) \log(1 - \sigma(\theta^{T}X_{i}))] - R(\theta)$
- Calculate P(Y|X)

Discriminative vs Generative Models

• Discriminative models optimize the conditional likelihood:

 $\widehat{\theta_{disc}} = \operatorname{argmax}_{\theta} P(Y|X;\theta)$

• Generative models optimize the joint likelihood:

 $\widehat{\theta_{gen}} = \operatorname{argmax}_{\theta} P(X, Y; \theta)$

Are these the same optimization?

Discriminative vs Generative Models

• Discriminative models optimize the conditional likelihood: $\widehat{\theta_{disc}} = \operatorname{argmax}_{\theta} P(Y|X;\theta) = \operatorname{argmax}_{\theta} \frac{P(X|Y;\theta)P(Y;\theta)}{P(X;\theta)}$ • Generative models optimize the joint likelihood: $\widehat{\theta_{gen}} = \operatorname{argmax}_{\theta} P(X,Y;\theta) = \operatorname{argmax}_{\theta} P(X|Y;\theta)P(Y;\theta)$

Are these the same optimization?

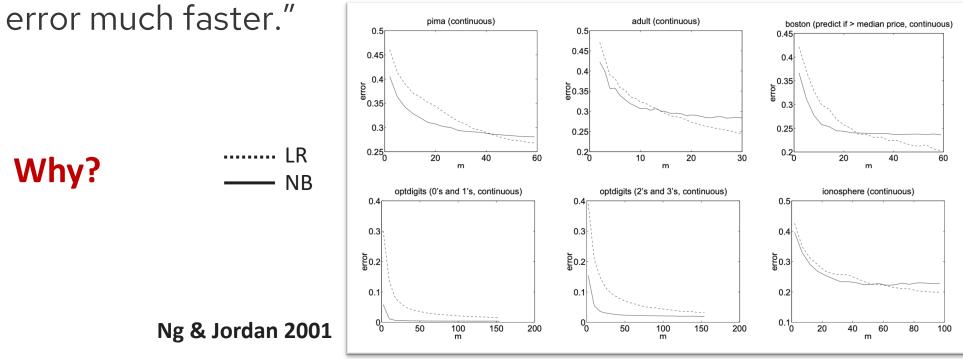
Same optimization when $P(X; \theta)$ is invariant to θ

Logistic Regression vs Naïve Bayes

Logistic Regression	Naïve Bayes
Discriminative	Generative
Defines $P(Y X;\theta)$	Defines $P(X, Y; \theta)$
Estimates $\widehat{\theta_{lr}} = \operatorname{argmax}_{\theta} P(Y X;\theta)$	Estimates $\widehat{\theta_{nb}} = \operatorname{argmax}_{\theta} P(X, Y, \theta)$
Lower asymptotic error on classification	Higher asymptotic error on classification
Slower convergence in terms of samples	Faster convergence in terms of samples

Andrew Ng's Insight

• "While discriminative learning has lower asymptotic error, a generative classifier may also approach its (higher) asymptotic



Andrew Ng's Insight

- "While discriminative learning has lower asymptotic error, a generative classifier may also approach its (higher) asymptotic error much faster."
- Underlying assumption of this statement:
 - Generative models of the form $P(X, Y, \theta)$ make more simplifying assumptions than do discriminative models of the form $P(Y|X, \theta)$.
 - Not always true
 - "So far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation **x** into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either $p(y|\mathbf{x})$ or $p(\mathbf{x}, y)$ for the data." Xue & Tittering 2008

Modern Deep Generative Models

January 27, 2025:

Questions?

