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Today
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• Conditional Independence
• Directed Graphical Models

• Markov Chains
• Hidden Markov Models
• Bayesian Networks



Conditional Independence



Introduction to Conditional Independence
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• Variables X and Y are independent if:
𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃 𝑌

• Notation: 𝑋 ⊥ 𝑌

• Variables X and Y are conditionally independent given Z if:
𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃 𝑌 𝑍

• Equivalently: 𝑃 𝑋 𝑌, 𝑍 = 𝑃(𝑋, 𝑍)
• Notation: 𝑋 ⊥ 𝑌 ∣ 𝑍



Example of Conditional Independence
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• Let X = Fever, Y = Rash, Z = Measles
• Given that a patient has measles, does knowing if they have a 

fever give us any additional information about whether they 
have a rash?

𝑃 𝑋, 𝑌 𝑍 =
𝑃 𝑋, 𝑌, 𝑍
𝑃(𝑍)

=
𝑃 𝑋 𝑍 𝑃 𝑌 𝑍 𝑃 𝑍

𝑃(𝑍)
= 𝑃 𝑋 𝑍 𝑃(𝑌 ∣ 𝑍)

Subtype of 
measles?

𝑃 𝑋, 𝑌 𝑍 =+
!"

𝑃 𝑍" 𝑍 𝑃 𝑋 𝑍" 𝑃 𝑌 𝑍"



Recall Naïve Bayes
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• Conditional independence of 𝑋!s | Y allows for efficient 
computation of 𝑃 𝑋 𝑌 :

𝑃 𝑋 𝑌 = 𝑃(𝑋#, … , 𝑋$|𝑌)

=
∏%𝑃(𝑋% ∣ 𝑌) 𝑃 𝑌

𝑃(𝑌)

=/
%

𝑃(𝑋% ∣ 𝑌)



Recall Naïve Bayes
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• Could we switch the direction of one of the arrows?

𝑃(𝑋#)𝑃(𝑌|𝑋#)∏%&'𝑃(𝑋% ∣ 𝑌)
𝑃(𝑌)

=/
%

𝑃(𝑋% ∣ 𝑌)

𝑃 𝑋 𝑌 = 𝑃(𝑋#, … , 𝑋$|𝑌)
=



Recall Naïve Bayes
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• Could we switch the direction of two of the arrows?

𝑃 𝑋# 𝑃(𝑋')𝑃(𝑌|𝑋#, 𝑋')∏%&(𝑃(𝑋% ∣ 𝑌)
𝑃(𝑌)

=
𝑃 𝑋! 𝑃 𝑋"
𝑃(𝑋!, 𝑋")

𝑃 𝑋!, 𝑋" 𝑌 (
#$%

𝑃(𝑋# ∣ 𝑌)

𝑃 𝑋 𝑌 = 𝑃(𝑋#, … , 𝑋$|𝑌)
=

Now we need 𝑿𝟏 ⊥ 𝑿𝟐



What happened?
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Naïve Bayes Modified Naïve Bayes Broken Naïve Bayes

Intuitively: Ignoring graph structure can double-count evidence.

𝑃 𝑋 𝑌 =/
#

𝑃(𝑋# ∣ 𝑌) 𝑃 𝑋 𝑌 =/
#

𝑃(𝑋# ∣ 𝑌) 𝑃 𝑋 𝑌 =
𝑃 𝑋! 𝑃 𝑋"
𝑃(𝑋!, 𝑋")

𝑃 𝑋!, 𝑋" 𝑌 (
#$%

𝑃(𝑋# ∣ 𝑌)



Questions about Conditional 
Independence?



Directed Graphical Models:
Bayesian Networks



Two types of Graphical Models

• Directed edges give causality relationships (e.g. Bayesian 
Network)

• Undirected edges give correlations between variables (e.g.
Markov Random Field)
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Representing Multivariate Distributions

• If 𝑋!𝑠 are conditionally independent, the joint can be factored to 
a product of simpler terms, e.g.

• Special case: If 𝑋!𝑠 are independent: 𝑃 𝑋! ⋅ = 𝑃(𝑋!)
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𝑃 𝑋!, 𝑋", 𝑋#, 𝑋$, 𝑋%, 𝑋&, 𝑋', 𝑋( =
𝑃 𝑋! 𝑃 𝑋"

𝑃 𝑋# 𝑋! 𝑃 𝑋$ 𝑋" 𝑃 𝑋% 𝑋"
𝑃 𝑋& 𝑋#, 𝑋$ 𝑃 𝑋' 𝑋& 𝑃(𝑋(|𝑋&, 𝑋%)

𝑃 𝑋$, 𝑋%, 𝑋&, 𝑋', 𝑋(, 𝑋), 𝑋*, 𝑋+ = 𝑃 𝑋$ 𝑃 𝑋% 𝑃 𝑋& 𝑃 𝑋' 𝑃 𝑋( 𝑃 𝑋) 𝑃 𝑋* 𝑃(𝑋+)



Example: The Dishonest Casino

• Suppose a casino has two dice:
• Fair dice: P(1) = P(2) = … = P(6) = 1/6
• Loaded dice: P(1) = P(2) = P(3) = P(4) = P(5) = 1/10, P(6) = ½

• Suppose the dealer switches between die every 20 times
• Game:

• You bet $1
• You roll
• Dealer rolls (maybe with fair dice, maybe with loaded dice)
• Highest number wins $2
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Do you play at the dishonest casino?



Fundamental Questions at the dishonest casino

• Representation
• Can we build a model of how this game works?

• Learning
• Can we learn how ”loaded” is the loaded dice? How often does the dealer

change from fair to loaded and back?

• Inference
• After observing a sequence of rolls, can we say what portion of the 

sequence was generated with a fair die vs a loaded one? How likely are we to
sit at the table?
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A Simple Directed PGM

• Markov Chain
• Markov property: “The future state depends only on the 

present state, and not on past states”
• Parameters:

• Transition Probability Matrix: 𝑀#& = 𝑃(𝑋' = 𝑗 ∣ 𝑋'(! = 𝑖)
• Initial State Distribution: 𝜋# = 𝑃(𝑋! = 𝑖)

Ben Lengerich © University of Wisconsin-Madison 2025

𝑋# 𝑋' … 𝑋$4# 𝑋$

P X = 𝑃 𝑋# /
5&'

𝑃(𝑋5 ∣ 𝑋54#)



Hidden Markov Model (HMM)

• Markov chain but underlying drivers not observed
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𝑍# 𝑍' … 𝑍$4# 𝑍$

𝑋# 𝑋' … 𝑋$4# 𝑋$

P X, Z = 𝑃 𝑍# /
5&'

𝑃 𝑍5 𝑍54# /
5"

𝑃 𝑋5 𝑍5

• Parameters:
Observation (“Emission”) ProbabilityE67 = 𝑃 𝑋5 = 𝑘 𝑍5 = 𝑗
Transition Probability Matrix: 𝑀%8 = 𝑃(𝑍5 = 𝑗 ∣ 𝑍54# = 𝑖)
Initial State Distribution: 𝜋% = 𝑃(𝑍# = 𝑖)



Dishonest Casino as HMM

• 𝑍": Dice being used by dealer (fair or loaded)
• Observation Probability Matrix: Probability of dice roll, given 𝑍"
• Transition Probability Matrix: How often dealer switches die.
• Initial State Distribution: What do we believe the dealer started

with?
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𝑍# 𝑍' … 𝑍$4# 𝑍$

𝑋# 𝑋' … 𝑋$4# 𝑋$

P X, Z = 𝑃 𝑍# /
5&'

𝑃 𝑍5 𝑍54# /
5"

𝑃 𝑋5 𝑍5



Bayesian Network (BN)

• A BN is a directed acyclic graph whose nodes represent the 
random variables and whose edges represent direct influence of 
one variable on another
• Provides the skeleton for representing a joint distribution 

compactly in a factorized way
• Compact representation of a set of conditional independence 

assumptions
• We can view the graph as encoding a generative sampling 

process executed by nature.
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Bayesian Network (BN)

Factorization Theorem:
Given a DAG, the most general form of the probability distribution
that is consistent with the graph factors according to:
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𝑃 𝑋 =$
!

𝑃 𝑋! 𝑋"#

where 𝑋$) is the set of parents of 𝑋!.



Bayesian Network: Local Structures

• Common parent
• Knowing B decouples A and C
• 𝐴 ⊥ 𝐶 ∣ 𝐵
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• Cascade
• Knowing B decouples A and C
• 𝐴 ⊥ 𝐶 ∣ 𝐵

• V-structure
• Knowing B couples A and C
• A can “explain away” C

Three foundational building blocks for creating complex BNs

𝐵

𝐶𝐴

𝐵 𝐶𝐴

𝐵

𝐶𝐴



I-Maps

• Independence set: Let 𝑃 be a distribution over 𝑋. We define 𝐼(𝑃)
to be the set of independences (𝑋 ⊥ 𝑌 ∣ 𝑍) that hold in 𝑃.
• I-Map: Let 𝐺 be any graph object with an associated 

independence set 𝐼(𝐺). We say that 𝐺 is an I-map for an 
independence set 𝐼 if 𝐼 𝐺 ⊆ 𝐼.
• I-Map of Distribution: We say 𝐺 is an I-map for 𝑃 if 𝐺 is an I-map 

for 𝐼(𝑃), when we use 𝐼(𝐺) as the associated independence set.
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Graph G
Distribution P

I(G) I(P)⊆?

𝐺 is an I-Map for 𝑃 if 𝐼 𝐺 ⊆ 𝐼(𝑃)

Why does the graph get special privileges?



Facts about I-Maps

• For G to be an I-map of P, it is necessary that G does not 
mislead us regarding any independencies in P.
• Any independence that G asserts must also hold in P. Conversely, P may 

have additional independencies that are not reflected in G.
• “We must be able to use G to estimate P”.

• Example
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𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

𝐺, 𝐺-→/ 𝐺/→-

X Y P(X,Y)

0 0 0.08

0 1 0.32

1 0 0.12

1 1 0.48

X Y P(X,Y)

0 0 0.4

0 1 0.3

1 0 0.2

1 1 0.1

𝑃$ 𝑃%



From I(G) to local Markov assumptions of BNs

• In a BN, each node is independent of its non-descendants given 
its parents.
• Let 𝑃𝑎%) denote the parents of 𝑋!in G and 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠%)

denote the variables in the graph that are not descendants of 𝑋!. 
Then G encodes the following set of local conditional 
independence assumptions 𝐼& 𝐺 :
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𝐼= 𝐺 = {𝑋% ⊥ 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠>*|𝑃𝑎>*: ∀ 𝑖}

𝑃𝑎>*
𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠>*𝑋%



Graph separation

• D-separation criterion for Bayesian networks [Pearl, 1988]
• D for “directed” edges
• Definition: A set of nodes 𝑋 is d-separated (conditionally independent) 

from a set of nodes Y given a conditioning set 𝑍 iff every path between any 
nodes in 𝑋 and any node in 𝑌 is blocked by 𝑍. 
• A path between nodes 𝐴 and 𝐵 is blocked by 𝑍 if it contains at least one of 

the following structures:
• Chain: 𝐴 → 𝑍0 → 𝐵 for 𝑍0 ∈ 𝑍
• Fork: 𝐴 ← 𝑍0 → 𝐵 for 𝑍0 ∈ 𝑍
• Collider: 𝐴 → 𝐶 ← 𝐵 for 𝐶 ∉ 𝑍 AND no descendant of 𝐶 is in 𝑍
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𝑍′

𝐵𝐴
𝑍′ 𝐵𝐴

𝐶

𝐵𝐴



Active Trails

• Causal: 𝐴 → 𝑍 → 𝐵
• Active iff 𝑍 is not observed.

• Common Cause: 𝐴 ← 𝑍 → 𝐵
• Active iff 𝑍 is not observed.

• Collider: 𝐴 → 𝑍 ← 𝐵
• Active iff 𝑍 OR one of 𝑍’s descendants is observed.
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𝑍

𝐵𝐴
𝑍 𝐵𝐴

𝑍

𝐵𝐴



An alternate definition of D-separation

• MAG Definition of D-Separation
• Variables 𝑋 and 𝑌 are D-separated given 𝑍 if they are separated in the 

moralized ancestral graph.

• Example:
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𝑌𝑍

𝑋

Original Graph

𝑌𝑍

𝑋

Ancestral Graph for X,Y,Z
Remove non-
ancestors of X,Y,Z

Connect coparents, 
undirect edges

𝑌𝑍

𝑋

Moral Ancestral Graph

Are X and Y separated by Z (i.e.
removing Z disconnects X and Y)?



Example
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𝑋(

𝑋G𝑋'

𝑋#

• What is the I(G) of this graph?

• 𝑋$ ⊥ 𝑋&
• 𝑋$ ⊥ 𝑋'

• 𝑋$ ⊥ 𝑋& ∣ 𝑋'
• 𝑋% ⊥ 𝑋' ∣ 𝑋&



Quantitatively Specifying Probability Distributions

Equivalence Theorem:
For a graph 𝐺,
Let 𝐷' denote the family of all distributions that satisfy 𝐼(𝐺).
Let 𝐷( denote the family of all distributions that factor 
according to 𝐺
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Then 𝐷' = 𝐷(.

𝑃 𝑋 =/
%

𝑃(𝑋% ∣ 𝑋H*)



Conditional Probability Tables (CPTs)
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Conditional Probability Density Functions (CPDs)
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Summary of BN semantics

• A Bayesian Network is a pair (𝐺, 𝑃) where 𝑃 factorizes over 𝐺 and 
where 𝑃 is specified as a set of CPDs associated with 𝐺’s nodes.
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Uniqueness of BNs

• Very different BN graphs can be equivalent (in that they encode 
the same set of conditional independence assertions).
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𝑍 𝑌𝑋

𝑍 𝑋𝑌

𝑋 ⊥ Y ∣ 𝑍

𝑍

𝑌𝑋



I-equivalence

• Definition of I-Equivalence: Two BN graphs 𝐺' and 𝐺( over 𝑋 are 
I-equivalent if 𝐼(𝐺') = 𝐼(𝐺().
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𝑍 𝑌𝑋

𝑍 𝑋𝑌

𝑋 ⊥ Y ∣ 𝑍

𝑍

𝑌𝑋

How can we distinguish structures when learning?



Simple BNs

• IID Observations
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𝜃

𝑌I𝑌# …

Model parameters

Data

𝑃 𝑌; 𝜃 = 𝑃 𝜃 /
%

𝑃 𝑌% 𝜃



Simple BNs

• Naïve Bayes
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𝑌

𝑋$𝑋# …

𝑃 𝑋 ∣ 𝑌 = 𝑃 𝑌 /
%

𝑃 𝑋% 𝑌



Notation: ”Plate”

• Naïve Bayes with Streamlined Notation
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𝑌

𝑋$𝑋# …

𝑌

𝑋%

𝑖 = 1: 𝑛

Plate notation

Variables within a plate are replicated 
in a conditionally independent manner



Questions?


