Probabilistic Graphical Models & Probabilistic Al

Ben Lengerich

Lecture 4: Conditional Independence and Directed Graphical Models January 30, 2025

Reading: See course homepage

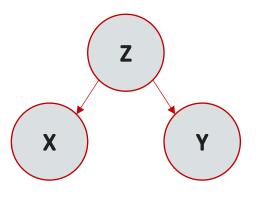
Today

- Conditional Independence
- Directed Graphical Models
 - Markov Chains
 - Hidden Markov Models
 - Bayesian Networks

Conditional Independence

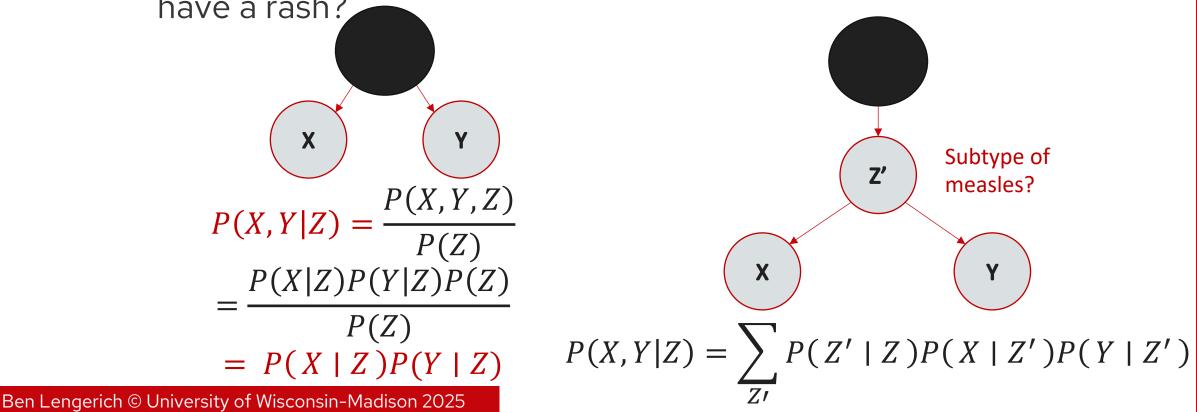
Introduction to Conditional Independence

- Variables X and Y are **independent** if: P(X,Y) = P(X)P(Y)
 - Notation: $X \perp Y$
- Variables X and Y are conditionally independent given Z if: P(X, Y|Z) = P(X|Z)P(Y|Z)
 - Equivalently: P(X|Y,Z) = P(X,Z)
 - Notation: $X \perp Y \mid Z$



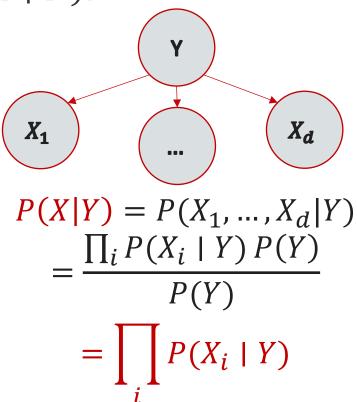
Example of Conditional Independence

- Let X = Fever, Y = Rash, Z = Measles
- Given that a patient has measles, does knowing if they have a fever give us any additional information about whether they have a rash?



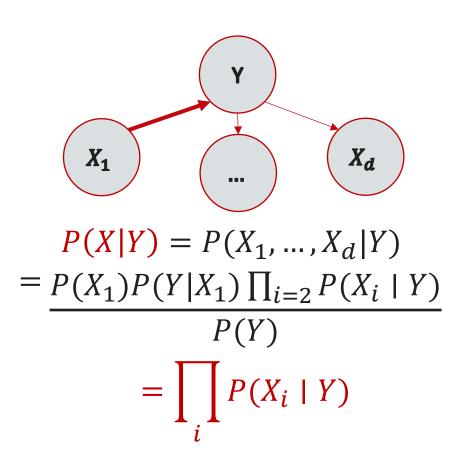
Recall Naïve Bayes

 Conditional independence of X_is | Y allows for efficient computation of P(X | Y):



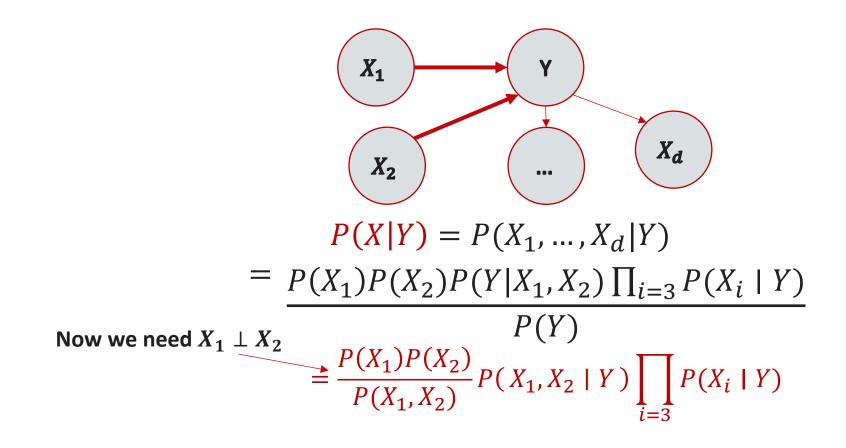
Recall Naïve Bayes

• Could we switch the direction of **one** of the arrows?

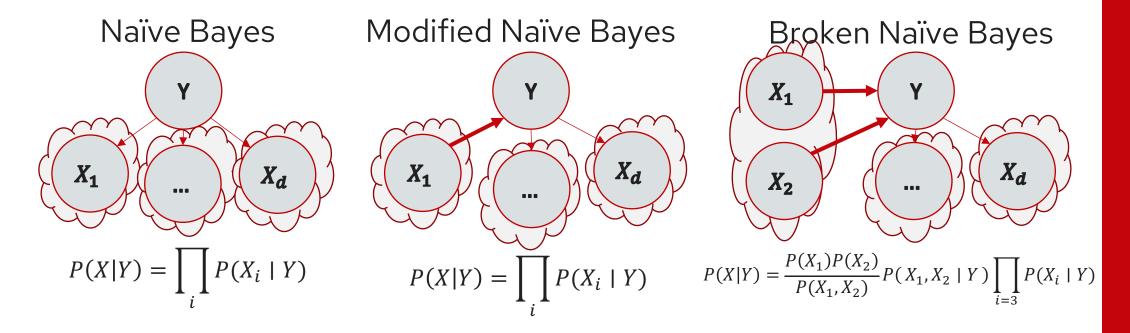


Recall Naïve Bayes

• Could we switch the direction of **two** of the arrows?



What happened?



Intuitively: Ignoring graph structure can **double-count evidence**.

Ben Lengerich © University of Wisconsin-Madison 2025

Questions about Conditional Independence?

Directed Graphical Models: Bayesian Networks

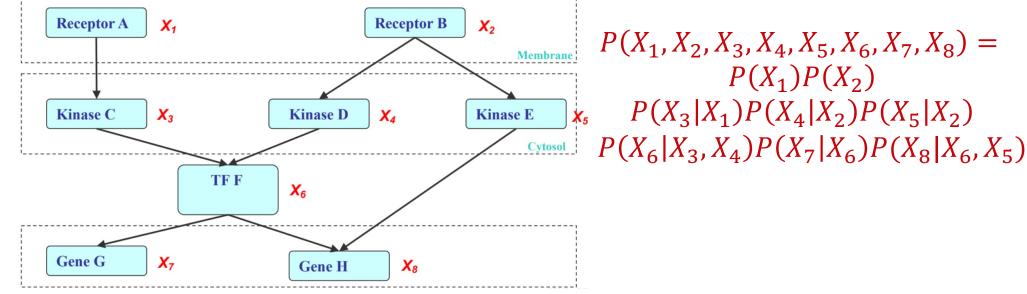
Two types of Graphical Models

• Directed edges give causality relationships (e.g. Bayesian Network)

• Undirected edges give correlations between variables (e.g. Markov Random Field)

Representing Multivariate Distributions

• If *X_is* are conditionally independent, the joint can be factored to a product of simpler terms, e.g.



• Special case: If $X_i s$ are independent: $P(X_i | \cdot) = P(X_i)$

 $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) = P(X_1)P(X_2)P(X_3)P(X_4)P(X_5)P(X_6)P(X_7)P(X_8)$

Example: The Dishonest Casino

- Suppose a casino has two dice:
 - Fair dice: P(1) = P(2) = ... = P(6) = 1/6
 - Loaded dice: P(1) = P(2) = P(3) = P(4) = P(5) = 1/10, P(6) = 1/2
- Suppose the dealer switches between die every 20 times
- Game:
 - You bet \$1
 - You roll
 - Dealer rolls (maybe with fair dice, maybe with loaded dice)
 - Highest number wins \$2

Do you play at the dishonest casino?

Fundamental Questions at the dishonest casino

- Representation
 - Can we build a model of how this game works?
- Learning
 - Can we learn how "loaded" is the loaded dice? How often does the dealer change from fair to loaded and back?
- Inference
 - After observing a sequence of rolls, can we say what portion of the sequence was generated with a fair die vs a loaded one? How likely are we to sit at the table?

A Simple Directed PGM

- Markov Chain
- Markov property: "The future state depends only on the present state, and not on past states"
- Parameters:
 - Transition Probability Matrix:
 - Initial State Distribution:

$$M_{ij} = P(X_t = j \mid X_{t-1} = i)$$

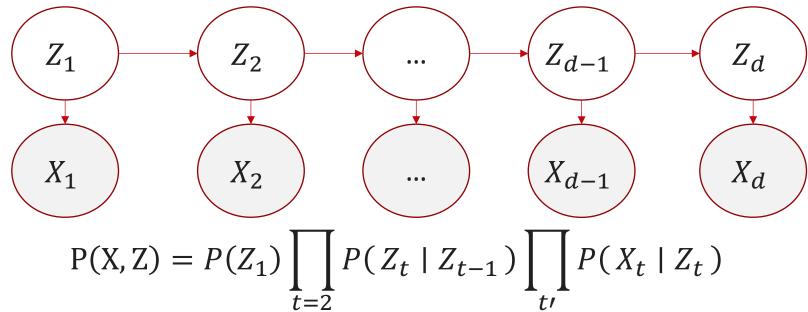
$$\pi_i = P(X_1 = i)$$

$$X_1 \qquad X_2 \qquad \dots \qquad X_{d-1} \qquad X_d$$
$$P(X) = P(X_1) \prod_{t=2} P(X_t \mid X_{t-1})$$

Hidden Markov Model (HMM)

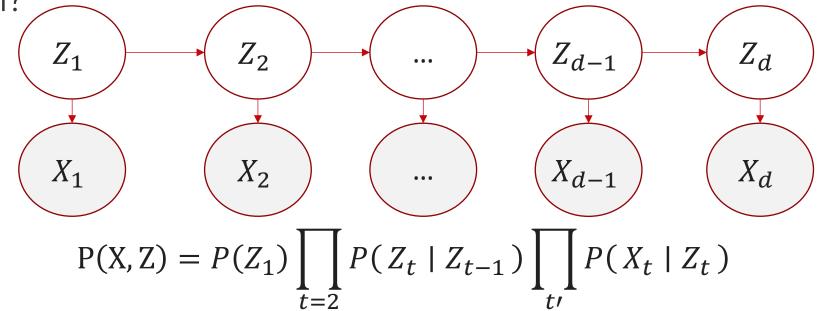
- Markov chain but **underlying drivers not observed**
- Parameters:

Observation ("Emission") Probability $E_{kj} = P(X_t = k | Z_t = j)$ Transition Probability Matrix: $M_{ij} = P(Z_t = j | Z_{t-1} = i)$ Initial State Distribution: $\pi_i = P(Z_1 = i)$



Dishonest Casino as HMM

- Z_t : Dice being used by dealer (fair or loaded)
- Observation Probability Matrix: Probability of dice roll, given Z_t
- Transition Probability Matrix: How often dealer switches die.
- Initial State Distribution: What do we believe the dealer started with?



Ben Lengerich © University of Wisconsin-Madison 2025

Bayesian Network (BN)

- A BN is a **directed acyclic graph** whose nodes represent the random variables and whose edges represent direct influence of one variable on another
- Provides the skeleton for representing a joint distribution compactly in a **factorized** way
- Compact representation of a set of conditional independence assumptions
- We can view the graph as encoding a **generative sampling process** executed by nature.

Bayesian Network (BN)

Factorization Theorem:

Given a DAG, the most general form of the probability distribution that is consistent with the graph factors according to:

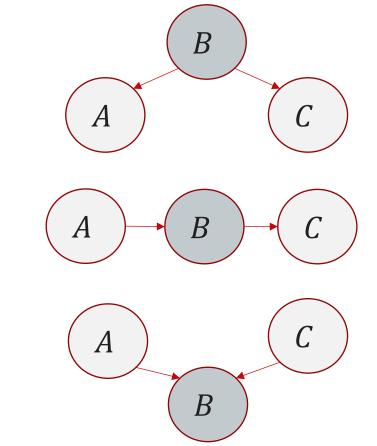
$$P(X) = \prod_{i} P(X_i \mid X_{\pi_i})$$

where X_{π_i} is the set of parents of X_i .

Bayesian Network: Local Structures

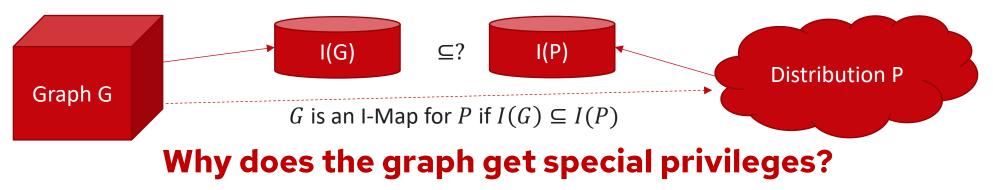
- Common parent
 - Knowing B **decouples** A and C
 - $A \perp C \mid B$
- Cascade
 - Knowing B **decouples** A and C
 - $A \perp C \mid B$
- V-structure
 - Knowing B **couples** A and C
 - A can "explain away" C

Three foundational building blocks for creating complex BNs



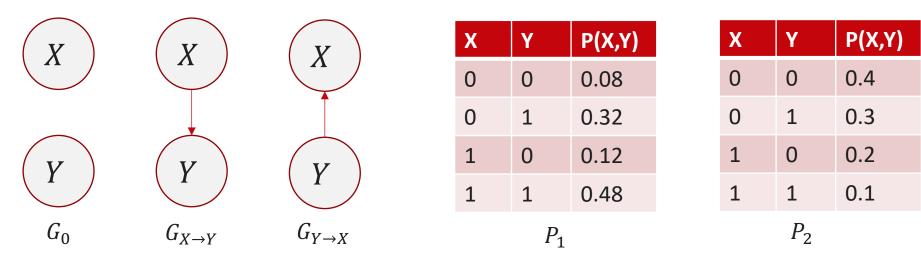
I-Maps

- Independence set: Let P be a distribution over X. We define I(P) to be the set of independences $(X \perp Y \mid Z)$ that hold in P.
- <u>I-Map</u>: Let G be any graph object with an associated independence set I(G). We say that G is an **I-map** for an independence set I if $I(G) \subseteq I$.
- I-Map of Distribution: We say G is an I-map for P if G is an I-map for I(P), when we use I(G) as the associated independence set.



Facts about I-Maps

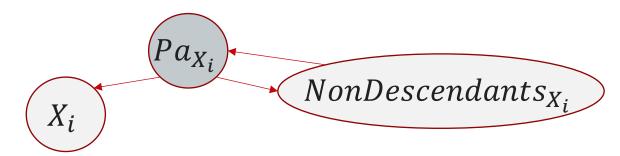
- For G to be an I-map of P, it is necessary that G does not mislead us regarding any independencies in P.
 - Any independence that G asserts must also hold in P. Conversely, P may have additional independencies that are not reflected in G.
 - "We must be able to use G to estimate P".
- Example



From I(G) to local Markov assumptions of BNs

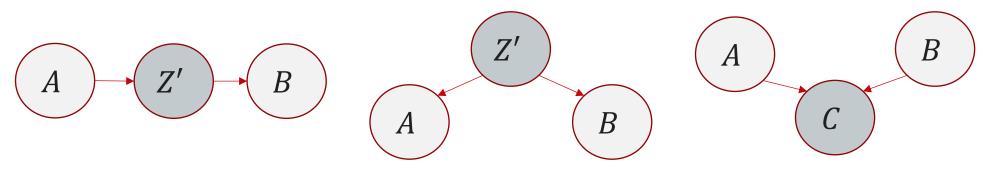
- In a BN, each node is independent of its non-descendants given its parents.
- Let Pa_{X_i} denote the parents of X_i in G and $NonDescendants_{X_i}$ denote the variables in the graph that are not descendants of X_i . Then G encodes the following set of *local conditional independence assumptions* $I_l(G)$:

 $I_{l}(G) = \{X_{i} \perp NonDescendants_{X_{i}} | Pa_{X_{i}}: \forall i\}$



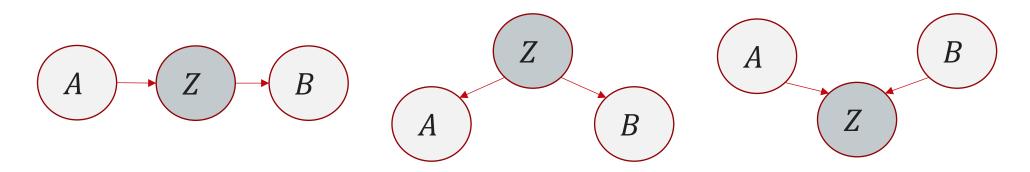
Graph separation

- <u>D-separation criterion</u> for Bayesian networks [Pearl, 1988]
 - D for "directed" edges
 - **Definition:** A set of nodes *X* is d-separated (conditionally independent) from a set of nodes Y given a conditioning set *Z* iff every path between any nodes in *X* and any node in *Y* is **blocked** by *Z*.
 - A path between nodes *A* and *B* is **blocked** by *Z* if it contains at least one of the following structures:
 - Chain: $A \to Z' \to B$ for $Z' \in Z$
 - Fork: $A \leftarrow Z' \rightarrow B$ for $Z' \in Z$
 - Collider: $A \rightarrow C \leftarrow B$ for $C \notin Z$ AND no descendant of C is in Z



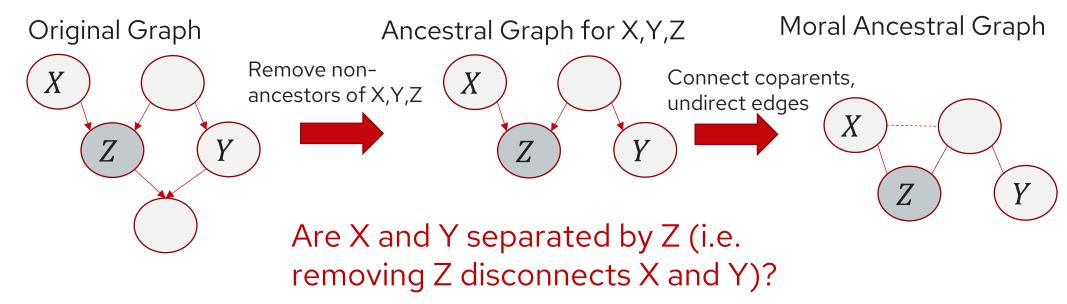
Active Trails

- Causal: $A \rightarrow Z \rightarrow B$
 - Active iff *Z* is not observed.
- Common Cause: $A \leftarrow Z \rightarrow B$
 - Active iff *Z* is not observed.
- Collider: $A \rightarrow Z \leftarrow B$
 - Active iff Z OR one of Z's descendants is observed.



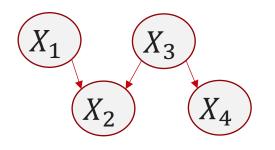
An alternate definition of D-separation

- MAG Definition of D-Separation
 - Variables X and Y are D-separated given Z if they are separated in the moralized ancestral graph.
- Example:



Example

• What is the I(G) of this graph?



- $X_1 \perp X_3$ • $X_1 \perp X_4$
- $X_1 \perp X_3 \mid X_4$ • $X_2 \perp X_4 \mid X_3$

Quantitatively Specifying Probability Distributions

Equivalence Theorem:

For a graph G,

Let D_1 denote the family of all distributions that satisfy I(G). Let D_2 denote the family of all distributions that factor

according to G

$$P(X) = \prod_{i} P(X_i \mid X_{\pi_i})$$

Then $D_1 = D_2$.

Conditional Probability Tables (CPTs)

 C^0

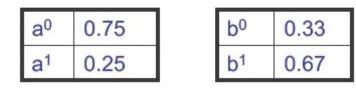
0.3

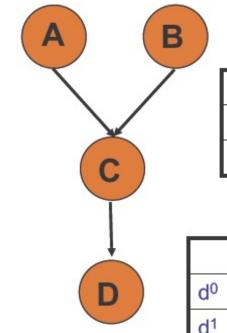
07

 C^1

0.5

0.5

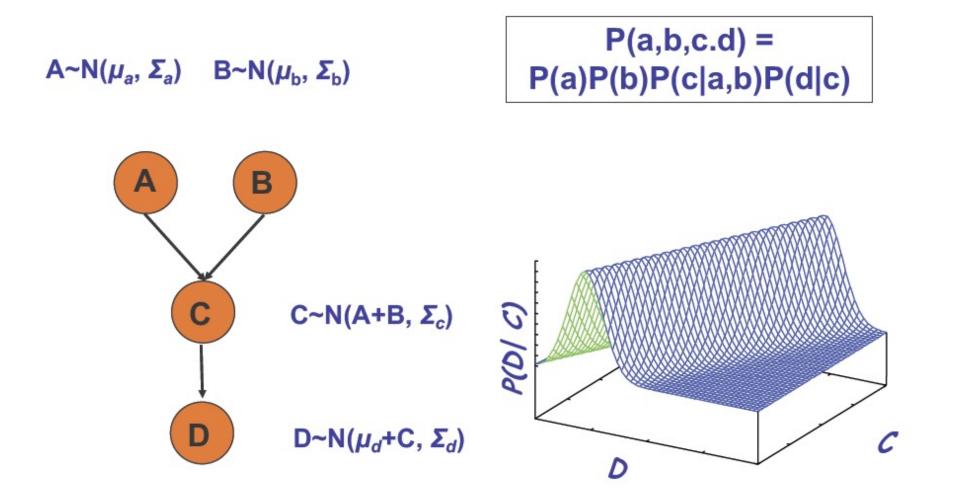




	a ⁰ b ⁰	a ⁰ b ¹	a ¹ b ⁰	a ¹ b ¹
c ⁰	0.45	1	0.9	0.7
c ¹	0.55	0	0.1	0.3

Ben Lengerich © University of Wisconsin-Madison 2025

Conditional Probability Density Functions (CPDs)



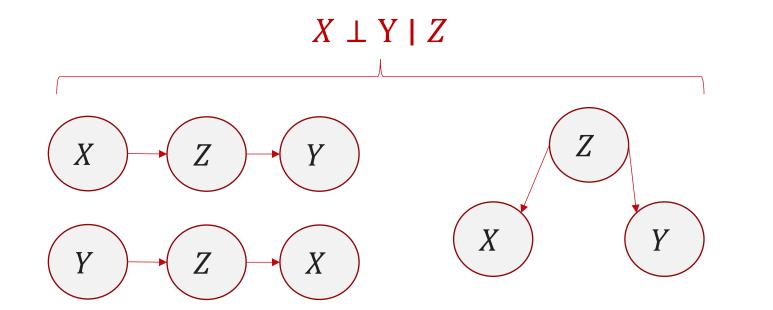
Ben Lengerich © University of Wisconsin-Madison 2025

Summary of BN semantics

• A Bayesian Network is a pair (*G*, *P*) where *P* factorizes over *G* and where *P* is specified as a set of CPDs associated with *G*'s nodes.

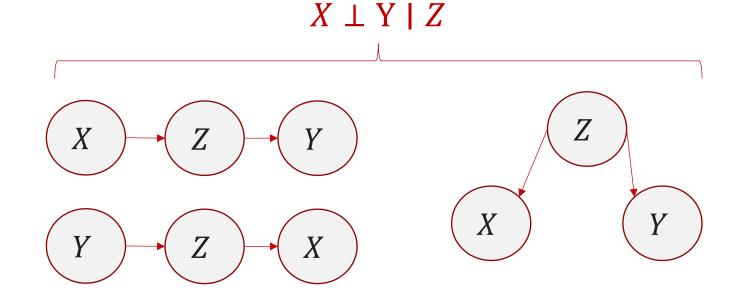
Uniqueness of BNs

• Very different BN graphs can be equivalent (in that they encode the same set of conditional independence assertions).



I-equivalence

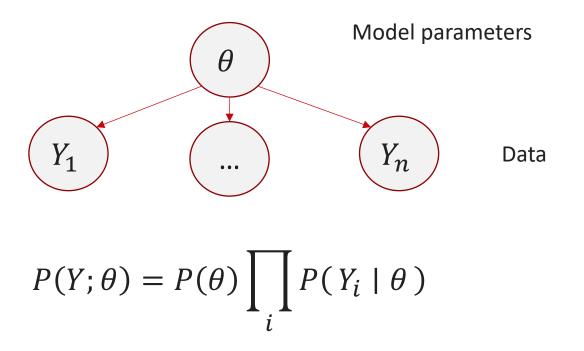
• Definition of I-Equivalence: Two BN graphs G_1 and G_2 over X are *I*-equivalent if $I(G_1) = I(G_2)$.



How can we distinguish structures when learning?

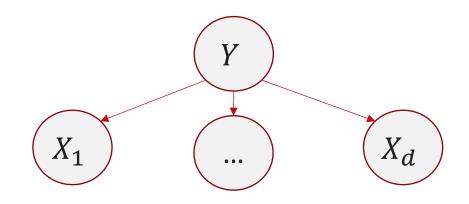
Simple BNs

• IID Observations



Simple BNs

• Naïve Bayes

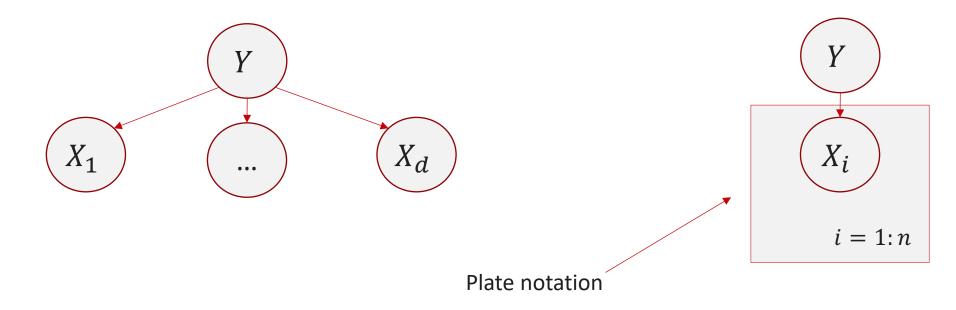


$$P(X \mid Y) = P(Y) \prod_{i} P(X_i \mid Y)$$

Ben Lengerich © University of Wisconsin-Madison 2025

Notation: "Plate"

• Naïve Bayes with Streamlined Notation



Variables within a plate are replicated in a conditionally independent manner

Questions?

