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Logistics

Ben Lengerich © University of Wisconsin-Madison 2025

• No class 2/11
• HW2 deadline pushed to 2/11 11:59pm
• Quiz in-class on 2/13

• Quiz format: 3 HW problems, 2 new problems



Today
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• Undirected Graphical Models
• Markov Random Fields
• Restricted Boltzmann Machines
• Conditional Random Fields



Undirected Graphical Models



Undirected Graphical Models
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• Pairwise relationships
• No explicit way to generate samples
• Contingency constraints on node configurations



Example: Lattice
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Example: Lattice
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• Naturally arises in image processing, lattice physics, etc
• The states of adjacent / nearby nodes are coupled due to 

pattern continuity, electro-magnetic force, etc.



Representing Undirected Graphical Models
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• An undirected graphical model represents a distribution 𝑃 𝑋
defined by an undirected graph 𝐻 and a set of positive potential 
functions 𝜓 associated with the cliques of 𝐻 such that:

P X!, … , X" =
1
Z
(
#

𝜓# 𝑋$

where 𝑍 represents the partition function: 𝑍 = ∑!∏"𝜓" 𝑋" .

• The potential function can be understood as a ”score” of the 
joint configuration

Are 𝝍𝒄 𝑿𝒄 probability 
densities?

Is 𝑷 𝑿 a proper 
probability density?

“Gibbs distribution”



What is a clique?
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• For 𝐺 = 𝑉, 𝐸 , a clique (complete subgraph) is a subgraph 𝐺# =
{𝑉# ⊆ 𝑉, 𝐸# ⊆ 𝐸} such that nodes in 𝑉′ are fully connected.
• A maximal clique is a clique such that any superset 𝑉## ⊃ 𝑉 is not

a clique.

Maximal cliques: {𝑋!, 𝑋&, 𝑋'}, 𝑋!, 𝑋(
Sub-cliques: 𝑋!, 𝑋& , 𝑋&, 𝑋' , 𝑋!, 𝑋' , 𝑋! , 𝑋& , 𝑋' , {𝑋(}



Example Lattice: Ising Model from Physics
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• Used to describe ferromagnetism
• Each node 𝑖 has a spin variable 𝑋$ ∈ −1,+1
• Let potential function for an edge (𝑖, 𝑗) be 𝜓$% 𝑋$ , 𝑋% =
exp(𝐽$%𝑋$𝑋%) (neighboring states share spins with some strength)

• 𝑃 𝑋 = &
'
∏"𝜓"(𝑋") =

&
'
exp ∑$,%𝜓$%(𝑋$ , 𝑋%)



Interpretation of Clique Potentials
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• This model implies 𝑋& ⊥ 𝑋)| 𝑋*, so joint must factorize as:
𝑃 𝑋&, 𝑋*, 𝑋) = 𝑃 𝑋* 𝑃 𝑋& 𝑋* 𝑃 𝑋) 𝑋*

• We could write as 𝑃 𝑋&, 𝑋* 𝑃(𝑋) ∣ 𝑋*) or 𝑃 𝑋*, 𝑋) 𝑃(𝑋& ∣ 𝑋*), but:
• Cannot have all potentials be marginals
• Cannot have all potential be conditionals

• Clique potentials can be thought of as general “compatibility” of 
their variables, but not as probability distributions.



Example UGM: Maximal Cliques
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𝑃 𝐴, 𝐵, 𝐶, 𝐷 =
1
𝑍𝜓+,- 𝐴, 𝐵, 𝐶 𝜓,-. 𝐵, 𝐶, 𝐷

𝑍 = E
+,-.

𝜓+,- 𝐴, 𝐵, 𝐶 𝜓,-.(𝐵, 𝐶, 𝐷)



Global Markov Independencies
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• Let H be an undirected graph:

• 𝐵 separates 𝐴 and 𝐶 if every path from a node in 𝐴 to a node in 𝐶
passes through a node in 𝐵: 

We write 𝒔𝒆𝒑𝑯 𝑨; 𝑪 𝑩

• A probability distribution satisfies the global Markov property if 
for any disjoint 𝐴, 𝐵, 𝐶 such that 𝐵 separates 𝐴 and 𝐶, A is 
independent of 𝐶 given 𝐵: 𝐼 𝐻 = {𝐴 ⊥ 𝐶 ∣ 𝐵: 𝑠𝑒𝑝/ 𝐴; 𝐶 𝐵 }



Local Markov Independencies
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• For each node 𝑋$ there is a unique Markov blanket of 𝑋$, denoted 
𝑀𝐵!!, which is the set of neighbors of 𝑋$ in the graph.

• The local Markov independencies in H are:
𝐼0 𝐻 = {𝑋$ ⊥ 𝑉 − 𝑋$ −𝑀𝐵!! ∣ 𝑀𝐵!!: ∀ 𝑖}

• In other words, 𝑋$ is independent of the rest of the nodes in the 
graph given its immediate neighbors.



Pairwise Markov Independencies

• The pairwise Markov independencies associated with H are:
𝐼1 𝐻 = 𝑋 ⊥ 𝑌 𝑉 − 𝑋, 𝑌 ∶ 𝑋, 𝑌 ∉ 𝐸

e.g.

𝑋& ⊥ 𝑋2| {𝑋*, 𝑋), 𝑋3}
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Recall: I-Maps

• Independence set: Let 𝑃 be a distribution over 𝑋. We define 𝐼(𝑃)
to be the set of independences (𝑋 ⊥ 𝑌 ∣ 𝑍) that hold in 𝑃.
• I-Map: Let 𝐺 be any graph object with an associated 

independence set 𝐼(𝐺). We say that 𝐺 is an I-map for an 
independence set 𝐼 if 𝐼 𝐺 ⊆ 𝐼.
• I-Map of Distribution: We say 𝐺 is an I-map for 𝑃 if 𝐺 is an I-map 

for 𝐼(𝑃), when we use 𝐼(𝐺) as the associated independence set.
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Graph G
Distribution P

I(G) I(P)⊆?

𝐺 is an I-Map for 𝑃 if 𝐼 𝐺 ⊆ 𝐼(𝑃)



I-Maps of UG

• An UG 𝐻 is an I-Map for a distribution 𝑃 if 𝐼 𝐻 ⊆ 𝐼(𝑃)
• 𝑃 is a Gibbs Distribution over 𝐻 if it can be represented as:

𝑃 𝑋 =
1
𝑍
Q
"∈-

𝜓" 𝑋"

• Theorem (soundness): If 𝑃 is a Gibbs Distribution over 𝐻, then 𝐻 is 
an I-Map of 𝑃.
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Graph H
Distribution P

I(H) I(P)⊆?

𝐻 is an I-Map for 𝑃 if 𝐼 𝐻 ⊆ 𝐼(𝑃)



Perfect Maps

• An UG 𝐻 is a perfect map for 𝑃 if for any 𝑋, 𝑌, 𝑍, we have that
𝑠𝑒𝑝/ 𝑋; 𝑍 𝑌 ⇔ 𝑋 ⊥ 𝑍 | 𝑌

• Not every distribution has a perfect map as an UG.
• Example: V-structure
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𝑌

𝑍𝑋

{𝑋 ⊥ 𝑍, 𝑋 ⊥ 𝑍 | 𝑌}

𝑌

𝑍𝑋

𝑌

𝑍𝑋

𝐼 𝐺1234#541 = 𝐼 𝐻671234#541 = 𝐼 𝐻671234#541 =
{𝑋 ⊥ 𝑍, 𝑋 ⊥ 𝑍 | 𝑌} ∅



GMs and UGMs rep. overlapping sets of dists
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Exponential Families

• Constraining clique potentials to be positive could be 
inconvenient (e.g., the interactions between a pair of atoms can 
be either attractive or repulsive).
• We can represent a clique potential 𝜓 in an unconstrainted

form using a real-valued “energy” function 𝜑 and have:
𝜓" 𝑋" = exp −𝜙" 𝑋"

• This gives the joint a nice additive structure:

𝑃 𝑋 =
1
𝑍 exp −E

"∈-

𝜙" 𝑋" =
1
𝑍 exp −𝐻 𝑋

“Energy”

In physics, this is called the Boltzmann distribution.
In statistics, this is called a log-linear model.
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Aside: MAP Inference = Free Energy Minimization

𝑃,506789:: 𝑋 = argmin/𝐹 𝑃 𝑋;𝐻 = argmin/E 𝐻 𝑋 − 𝑇𝑆 𝑃 𝑋
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𝑄∗ 𝜃 = argmin#𝐹 𝑄 = argmin#E# $ − log𝑃 𝑋 𝜃 − 𝑇𝑆 𝑄 − E# $ log 𝑃(𝜃)

Distribution 
observed in nature

Free energy Expected energy Entropy at 
temp T

Will make more sense after we study variational inference

Negative log likelihood Entropy = Uncertainty - LogPrior



Questions?


