Probabilistic Graphical Models & Probabilistic Al

Ben Lengerich

Lecture 5: Undirected GMs

February 4, 2025

Reading: See course homepage

Logistics

No class 2/11

HW2 deadline pushed to 2/11 11:59pm

• Quiz in-class on 2/13

• Quiz format: 3 HW problems, 2 new problems

Today

- Undirected Graphical Models
 - Markov Random Fields
 - Restricted Boltzmann Machines
 - Conditional Random Fields

Undirected Graphical Models

Undirected Graphical Models

- Pairwise relationships
- No explicit way to generate samples
- Contingency constraints on node configurations

Example: Lattice

Ben Lengerich © University of Wisconsin-Madison 2025

Example: Lattice

- Naturally arises in image processing, lattice physics, etc
- The states of adjacent / nearby nodes are coupled due to pattern continuity, electro-magnetic force, etc.

Representing Undirected Graphical Models

An undirected graphical model represents a distribution P(X) defined by an undirected graph H and a set of positive potential functions ψ associated with the cliques of H such that:

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{c} \psi_c(X_c)$$

"Gibbs distribution"

where Z represents the **partition function**: $Z = \sum_{X} \prod_{c} \psi_{c}(X_{c})$.

• The potential function can be understood as a "score" of the joint configuration

Are $\psi_c(X_c)$ probability densities?

Is P(X) a proper
probability density?

What is a clique?

- For $G = \{V, E\}$, a clique (complete subgraph) is a subgraph $G' = \{V' \subseteq V, E' \subseteq E\}$ such that nodes in V' are **fully connected**.
- A **maximal** clique is a clique such that any superset $V'' \supset V$ is *not* a clique.

Example Lattice: Ising Model from Physics

- Used to describe ferromagnetism
- Each node *i* has a spin variable $X_i \in \{-1, +1\}$

•
$$P(X) = \frac{1}{Z} \prod_{c} \psi_{c}(X_{c}) = \frac{1}{Z} \exp\{\sum_{i,j} \psi_{ij}(X_{i}, X_{j})\}$$

Interpretation of Clique Potentials

- This model implies $X_1 \perp X_3 \mid X_2$, so joint must factorize as: $P(X_1, X_2, X_3) = P(X_2)P(X_1 \mid X_2)P(X_3 \mid X_2)$
- We could write as $P(X_1, X_2)P(X_3 | X_2)$ or $P(X_2, X_3)P(X_1 | X_2)$, but:
 - Cannot have all potentials be marginals
 - Cannot have all potential be conditionals
- Clique potentials can be thought of as general "compatibility" of their variables, but not as probability distributions.

Example UGM: Maximal Cliques

$$P(A, B, C, D) = \frac{1}{Z} \psi_{ABC}(A, B, C) \psi_{BCD}(B, C, D)$$
$$Z = \sum_{ABCD} \psi_{ABC}(A, B, C) \psi_{BCD}(B, C, D)$$

Ben Lengerich © University of Wisconsin-Madison 2025

Global Markov Independencies

• Let H be an undirected graph:

• B separates A and C if every path from a node in A to a node in C passes through a node in B:

We write $sep_H(A; C | B)$

 A probability distribution satisfies the global Markov property if for any disjoint A, B, C such that B separates A and C, A is independent of C given B: I(H) = {A ⊥ C | B: sep_H(A; C | B)}

Local Markov Independencies

- For each node X_i there is a unique Markov blanket of X_i , denoted MB_{X_i} , which is the set of neighbors of X_i in the graph.
- The *local Markov independencies* in H are:

$$I_{l}(H) = \{X_{i} \perp V - \{X_{i}\} - MB_{X_{i}} \mid MB_{X_{i}}: \forall i\}$$

 In other words, X_i is independent of the rest of the nodes in the graph given its immediate neighbors.

Pairwise Markov Independencies

• The pairwise Markov independencies associated with H are: $I_P(H) = \{X \perp Y \mid V - \{X,Y\} : \{X,Y\} \notin E\}$

Recall: I-Maps

- Independence set: Let P be a distribution over X. We define I(P) to be the set of independences $(X \perp Y \mid Z)$ that hold in P.
- <u>I-Map</u>: Let G be any graph object with an associated independence set I(G). We say that G is an **I-map** for an independence set I if $I(G) \subseteq I$.
- I-Map of Distribution: We say G is an I-map for P if G is an I-map for I(P), when we use I(G) as the associated independence set.

I-Maps of UG

- An UG H is an I-Map for a distribution P if $I(H) \subseteq I(P)$
- *P* is a *Gibbs Distribution* over *H* if it can be represented as: $P(X) = \frac{1}{Z} \prod_{c \in C} \psi_c(X_c)$
- Theorem (soundness): If *P* is a Gibbs Distribution over *H*, then *H* is an I-Map of *P*.

Perfect Maps

- An UG *H* is a *perfect map* for *P* if for any *X*, *Y*, *Z*, we have that $sep_H(X; Z | Y) \Leftrightarrow X \perp Z | Y$
- Not every distribution has a perfect map as an UG.
 - Example: V-structure

GMs and UGMs rep. overlapping sets of dists

Exponential Families

- Constraining clique potentials to be positive could be inconvenient (e.g., the interactions between a pair of atoms can be either attractive or repulsive).
- We can represent a clique potential ψ in an **unconstrainted** form using a real-valued "energy" function φ and have: $\psi_c(X_c) = \exp(-\phi_c(X_c))$
- This gives the joint a nice additive structure:

$$P(X) = \frac{1}{Z} \exp\left\{-\sum_{c \in C} \phi_c(X_c)\right\} = \frac{1}{Z} \exp\{-H(X)\}$$

"Energy"

In physics, this is called the **Boltzmann distribution**. In statistics, this is called a **log-linear model**.

Aside: MAP Inference = Free Energy Minimization

 $P_{Boltzmann}(X) = \operatorname{argmin}_{H} F(P(X;H)) = \operatorname{argmin}_{H} E[H(X)] - TS(P(X))$

Distribution	Free energy	Expected energy	Entropy at
observed in nature			temp T

Negative log likelihood Entropy = Uncertainty - LogPrior $Q^*(\theta) = \operatorname{argmin}_Q F(Q) = \operatorname{argmin}_Q E_{Q(\theta)}[-\log P(X | \theta)] - TS(Q) - E_{Q(\theta)}[\log P(\theta)]$

Will make more sense after we study variational inference

Questions?

