Probabilistic Graphical Models & Probabilistic Al

Ben Lengerich

Lecture 6: Exact Inference

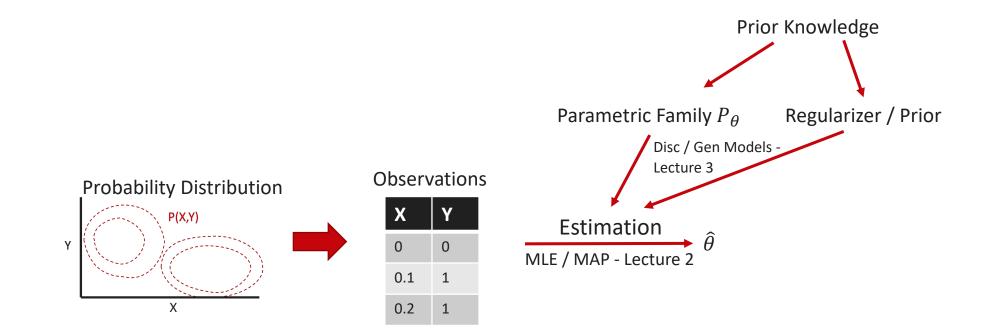
February 6, 2025

Reading: See course homepage

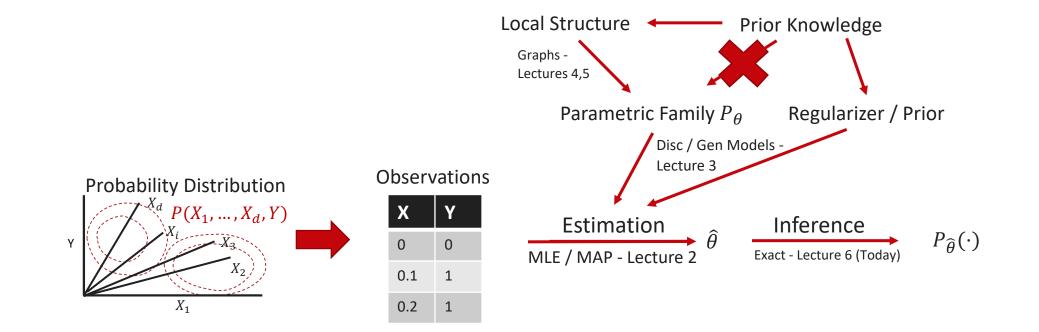
Logistics Reminders

- No class Tuesday, Feb 11
- HW2 due Tuesday, Feb 11 on Canvas
- Quiz in-class Thursday, Feb 13

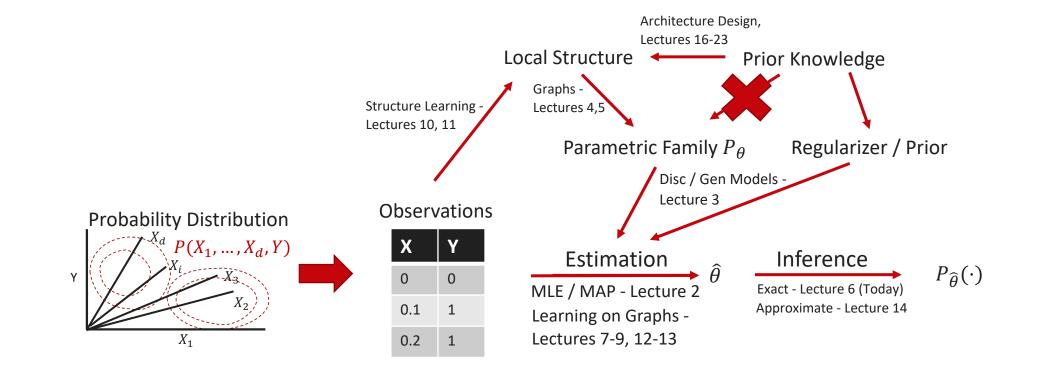
A Brief Recap of our Roadmap



A Brief Recap of our Roadmap



A Brief Recap of our Roadmap



Today

- Exact Inference
 - Variable Elimination

Exact Inference

Probabilistic Inference and Learning

- We now have compact representations of probability distributions: Graphical Models (GMs)
- A GM M describes a probability distribution P_M .
- Typical tasks:
 - Task 1 (**Inference**): How do we answer queries about P_M e.g. $P_M(X | Y)$?
 - Task 2 (**Learning**): How do we estimate a plausible model *M* from data *D*?

When could "learning" be seen as a form of inference?

Bayesian Perspective: Seeks $P_{prior}(M|D)$ **Missing Data:** Must impute missing data $P(M|D) = \int_{D_{missing}} P(D \mid D_{present}) P(M|D)$

Example Query 1: Likelihood

- Many queries involve **evidence**
 - Evidence *e* is an assignment of values to a set *E* of variables
- Example: compute the probability of evidence \boldsymbol{e}

$$P(e) = \sum_{X_1} \cdots \sum_{X_k} P(X_1, \dots, X_k, e)$$

- aka compute the likelihood of \boldsymbol{e}

Example Query 2: Conditional Probability

- Often we are interested in the **conditional probability distribution** of a variable given the evidence $P(X \mid e) = \frac{P(X, e)}{P(e)} = \frac{P(X, e)}{\sum_{x} P(X = x, e)}$
 - aka compute the **a posteriori belief** in X given evidence e
- We usually query a subset Y of all domain variables $X = \{Y, Z\}$ and don't care about the remaining Z:

$$P(Y \mid e) = \sum_{Z} P(Y, Z = z \mid e)$$

• aka *maginalization*.

Examples of a Posteriori Belief

• **Prediction:** What's the probability of an outcome given the starting condition?

B

R

• Query node is a descendent of the evidence

A

• **Diagnosis:** What's the probability of an underlying disease/fault given observed symptoms?

• Query node is an ancestor of the evidence

A

Probabilistic inference combines evidence from all parts of the network, not just following the directionality of the edges in a GM.

Example Query 3: Most Probable Assignment

- What's the most probable assignment (MPA) for some variables of interest?
- Usually performed under some evidence *e* and marginalized over other variables *Z*:

$$MPA(Y \mid e) = \operatorname{argmax}_{y} P(Y = y \mid e)$$

= $\operatorname{argmax}_{y} \sum_{z} P(Y = y, Z = z \mid e)$

- Examples:
 - Classification: $\hat{Y} = MPA(Y | e)$
 - Explanation: What is the most likely scenario given the evidence?

A cautionary note on MPA

- The MPA of a variable depends on the query "context" the set of variables being jointly queried.
- Example:
 - MPA of Y_1 ?
 - MPA of (*Y*₁, *Y*₂)?

<i>Y</i> ₁	<i>Y</i> ₂	$P(Y_2, Y_2)$
0	0	0.35
0	1	0.05
1	0	0.3
1	1	0.3

Complexity of inference

• Computing P(X = x | e) in a GM is **NP-hard**

What does this mean for us?

Inference cannot be solved in polynomial time unless P=NP.
 No general procedure that works efficiently for arbitrary GMs.
 For families of GMs, we can have provably efficient procedures.

Exponential worst-case performance for exact inference.
 Motivates approximate inference.

Elimination on Chains

• Consider the following GM:

$$X_1$$
 X_2 X_{d-1} X_d
• What is the likelihood that X_d is true?

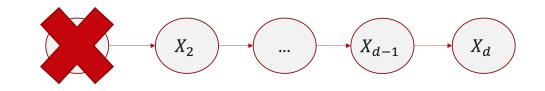
$$P(e) = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_{d-1}} P(X_1 = x_1, X_2 = x_2, \dots, X_d = x_d)$$

Exponential # of terms

• Leverage chain structure:

$$P(e) = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_{d-1}} P(X_1 = x_1) \prod_{i=2}^d P(X_i = x_i \mid X_{i-1} = x_{i-1})$$

Elimination on Chains



• Leverage chain structure:

$$P(e) = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_{d-1}} P(X_1 = x_1) \prod_{i=2}^d P(X_i = x_i \mid X_{i-1} = x_{i-1})$$

• Reorder terms:

$$P(e) = \sum_{x_2} \cdots \sum_{x_{d-1}} \prod_{i=3}^{d} P(X_i \mid X_{i-1}) \sum_{x_1} P(X_1) P(X_2 \mid X_1)$$

d

 $x_{d-1} i=3$

 x_2

• Substitute:

$$P(e) = \sum_{x_2} \cdots \sum_{x_{d-1}} \prod_{i=3}^{d} P(X_i \mid X_{i-1}) P(X_2)$$

Eliminates one
variable from our
summation at a
local cost.

Elimination on Chains

• Continue eliminating variables:

$$P(e) = \sum_{x_3} \cdots \sum_{x_{d-1}} \prod_{i=4}^{a} P(X_i \mid X_{i-1}) P(X_3)$$

• Eliminate nodes one-by-one all the way to the end

$$P(e) = \sum_{x_{d-1}} P(X_d \mid X_{d-1}) P(X_{d-1})$$

- Complexity of this calculation:
 - d steps, Each step takes $\approx |Dom(X_i)| * |Dom(X_{i-1})|$ operations
 - $\rightarrow O(dn^2)$ where $n = \max_i |Dom(X_i)|$
 - Compare to naïve $\mathcal{O}(d^n)$

Example: HMMs

$$(y_1) \rightarrow (y_2) \rightarrow (y_3) \rightarrow \cdots \rightarrow (y_T)$$

$$(x_1) \qquad (x_2) \qquad (x_3) \qquad \cdots \qquad (x_T)$$

$$(y_1) \rightarrow (y_2) \rightarrow (y_3) \rightarrow \cdots \rightarrow (y_T)$$

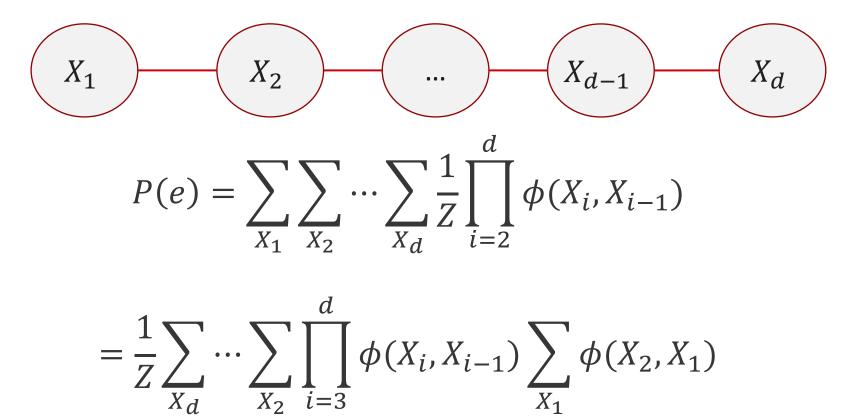
$$p(\mathbf{x}, \mathbf{y}) = p(x_1, \dots, x_T, y_1, \dots, y_T)$$

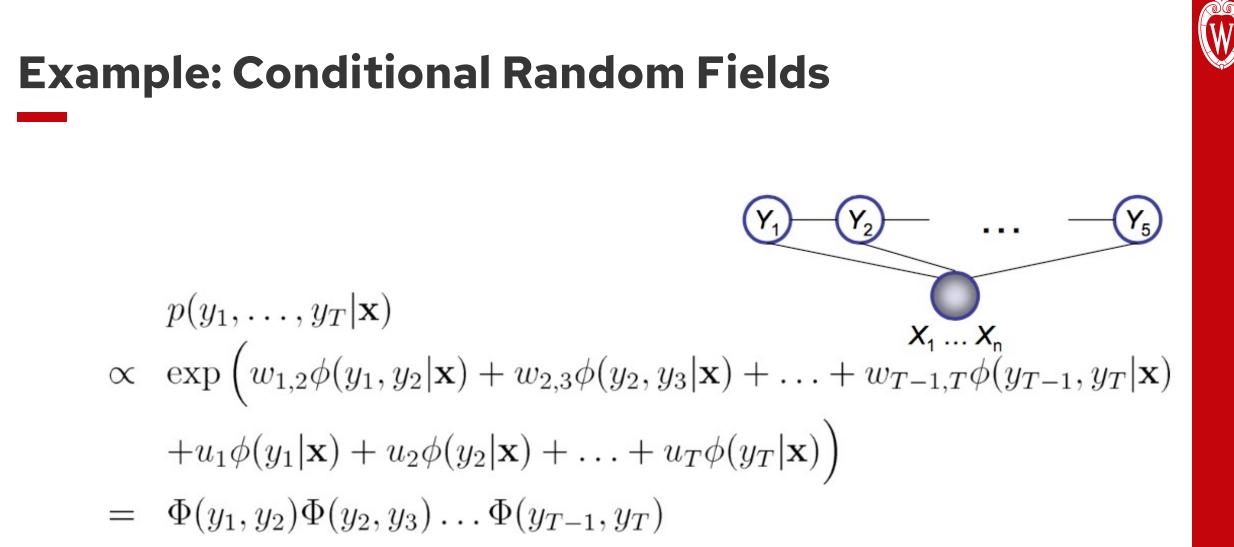
= $p(y_1) p(x_1 | y_1) p(y_2 | y_1) p(x_2 | y_2) \dots p(y_T | y_{T-1}) p(x_T | y_T)$

$$p(y_i|x_1, \dots, x_T) = \sum_{y_1} \dots \sum_{y_{i-1}} \sum_{y_{i+1}} \dots \sum_{y_T} p(y_i, \dots, y_T, x_1, \dots, x_T)$$

=
$$\sum_{y_1} \dots \sum_{y_{i-1}} \sum_{y_{i+1}} \dots \sum_{y_T} p(y_1) p(x_1|y_1) \dots p(y_T|y_{T-1}) p(x_T|y_T)$$

Elimination on Undirected Chains





The Sum-Product Operation

• In general, we want to compute the value of an expression of the form:

where ${\sf F}$ is a set of factors

• We call this task the **sum-product inference task**.

Variable Elimination: General form

• Write query in the form

$$P(X_1, e) = \sum_{x_d} \cdots \sum_{x_3} \sum_{x_2} \prod_i P(x_i \mid pa_i)$$

- Then iteratively:
 - Move all irrelevant terms outside of innermost sum.
 - Perform innermost sum, getting a new term.
 - Insert the new term into the product.

Outcome of elimination

- Let X be some set of variables
- Let F be a set of factors such that for each $\phi \in F$, $Scope[\phi] \in X$
- Let Y ⊂ X be a set of query variables and Z = X − Y be the variable to be eliminated.
- The result of eliminating Z is a factor

$$\tau(Y) = \sum_{Z} \prod_{\phi \in F} \phi$$

• This doesn't necessarily correspond to any probability or conditional probability.

Evidence and Sum-Product $\delta(E_i, \overline{e}_i) = \begin{cases} 1 & \text{if } E_i \equiv \overline{e}_i \\ 0 & \text{if } E_i \neq \overline{e}_i \end{cases}$

- Evidence potential
- Total evidence potential $\delta(\mathbf{E}, \overline{\mathbf{e}}) = \prod \delta(E_i, \overline{e}_i)$
- Introducing evidence-restricted tactors:

$$\tau(Y,\bar{e}) = \sum_{z,e} \prod_{\phi \in F} \phi \cdot \delta(E,\bar{e})$$

Variable Elimination Algorithm

Procedure **Elimination**(

- G, // the GM
- E, // evidence
- Z, // set of variables to be eliminated
- X, // query variable(s)
- 1. Initialize (G)
- 2. Evidence (E)
- 3. Sum-product-Elimination (F, Z)
- 4. Normalization (F)

Variable Elimination Algorithm

Procedure Initialize (G, Z)

- Let Z_1, \ldots, Z_k be an ordering of Z such that $Z_i \prec Z_j$ iff i < j
- 2. Initialize F with the full the set of factors

Procedure Evidence (E)

1. for each $i \in I_E$,

 $F = F \cup \delta(E_i, e_i)$

Procedure Sum-Product-Variable-Elimination (F, Z, \prec)

- 1. **for** i = 1, ..., k
 - $F \leftarrow \text{Sum-Product-Eliminate-Var}(F, Z_i)$
- 2. $\phi^* \leftarrow \prod_{\phi \in F} \phi$
- 3. return ϕ^*
- 4. Normalization (ϕ^*)

Procedure Normalization (ϕ^*)

1. $P(X|\mathbf{E}) = \phi^*(X) / \sum_x \phi^*(X)$

Procedure Sum-Product-Eliminate-Var (

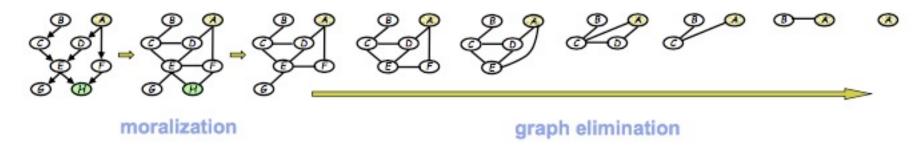
F, // Set of factors Z // Variable to be eliminated) 1. $F' \leftarrow \{\phi \in F : Z \in Scope[\phi]\}$ 2. $F'' \leftarrow F - F'$ 3. $\psi \leftarrow \prod_{\phi \in F'} \phi$ 4. $\tau \leftarrow \sum_Z \psi$

5. return $F'' \cup \{\tau\}$

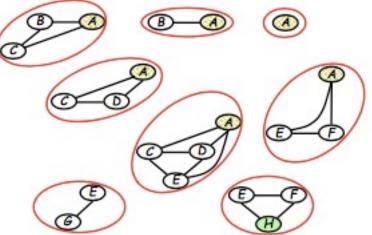
Complexity is **exponential** in number of variables in the **intermediate factor**

Understanding Variable Elimination

• A graph elimination algorithm



 Intermediate terms correspond to the cliques resulted from elimination



Query: P(A|h)

Need to eliminate: B, C, D, E, F, G, H
Initial factors:
P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)P(H|E,F)

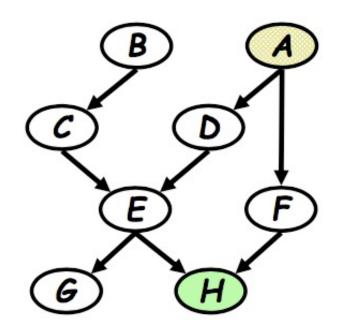
Step 1:

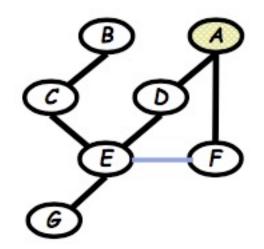
• Conditioning on evidence (fix H to h)

$$p_H(E,F) = P(H=h|E,F)$$

Same as a marginalization step

$$p_H(E,F) = \sum_{h'} P(H=h|E,F)\delta(h'=h)$$





Query: P(A|h)

• Need to eliminate: B, C, D, E, F, G, H

Initial factors:

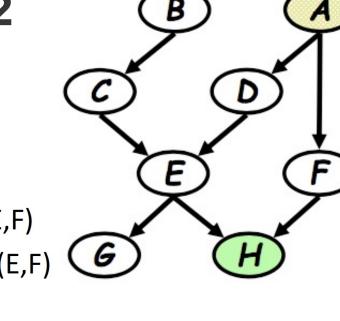
P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)P(H|E,F)

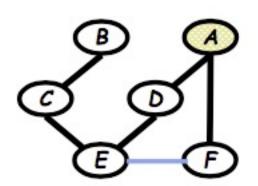
 $=> P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)p_{H}(E,F)$

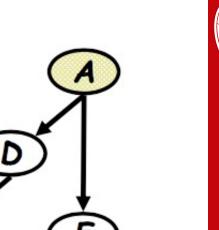
Step 2: Eliminate G

$$p_G(E) = \sum_g P(G = g|E) = 1$$

=> P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)p(E,F) $=> P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A) p_{H}(E,F)$







Query: P(A|h)

• Need to eliminate: B, C, D, E, F, G, H

Initial factors:

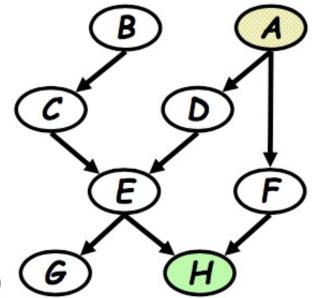
P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)P(H|E,F)=> P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)p_{H}(E,F)

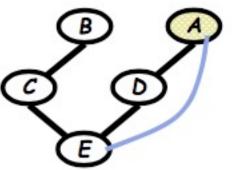
 $=> P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A) p_{H}(E,F)$

Step 3: Eliminate F

$$p_H(E,A) = \sum_f P(F = f|A)p_H(E,F)$$

 $\Rightarrow P(A)P(B)P(C|B)P(D|A)P(E|C,D) p_F(A,E)$





Query: P(A|h)

• Need to eliminate: B, C, D, E, F, G, H

Initial factors:

P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)P(H|E,F)

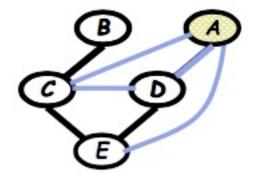
- $=> P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)p_{H}(E,F)$
- => $P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A) p_{H}(E,F)$ => $P(A)P(B)P(C|B)P(D|A)P(E|C,D) p_{F}(A,E)$
- Stop 1. Eliminata E

Step 4: Eliminate E

$$p_E(A, C, D) = \sum_e P(E = e | C, D) p_F(A, E)$$

 $\Rightarrow P(A)P(B)P(C|B)P(D|A)p_{E}(A,C,D)$





Query: P(A|h)

• Need to eliminate: B, C, D, E, F, G, H

Initial factors:

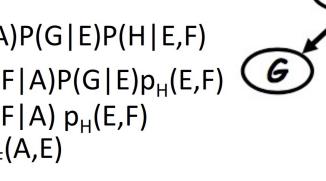
P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)P(H|E,F)

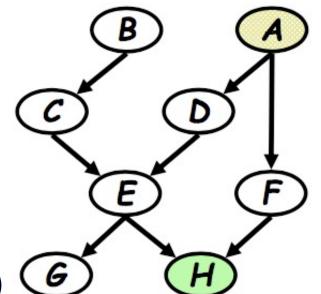
- $=> P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)p_{H}(E,F)$
- => $P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A) p_{H}(E,F)$
- => $P(A)P(B)P(C|B)P(D|A)P(E|C,D) p_F(A,E)$ => $P(A)P(B)P(C|B)P(D|A)p_F(A,C,D)$

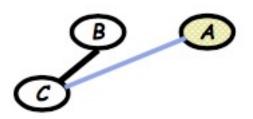
Step 5: Eliminate D

$$p_D(A,C) = \sum_d P(D=d|A)p_E(A,C,D)$$

 $\Rightarrow P(A)P(B)P(C|B) p_D(A,C)$







Query: P(A|h)

• Need to eliminate: B, C, D, E, F, G, H

Initial factors:

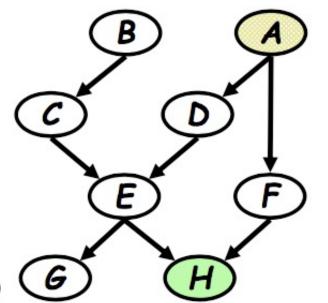
P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)P(H|E,F)

- => $P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)p_{H}(E,F)$ => $P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)p_{H}(E,F)$ => $P(A)P(B)P(C|B)P(D|A)P(E|C,D)p_{F}(A,E)$ => $P(A)P(B)P(C|B)P(D|A)p_{E}(A,C,D)$ => $P(A)P(B)P(C|B)P(C|B)P(D|A)p_{E}(A,C,D)$
- $\Rightarrow P(A)P(B)P(C|B) p_D(A,C)$

Step 6: Eliminate C

$$p_C(A,B) = \sum_c P(C=c|B)p_D(A,C)$$

 $\Rightarrow P(A)P(B)P(C|B) p_{C}(A,B)$



Query: P(A|h)

• Need to eliminate: B, C, D, E, F, G, H

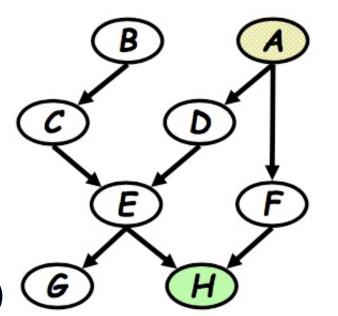
Initial factors:

P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)P(H|E,F)

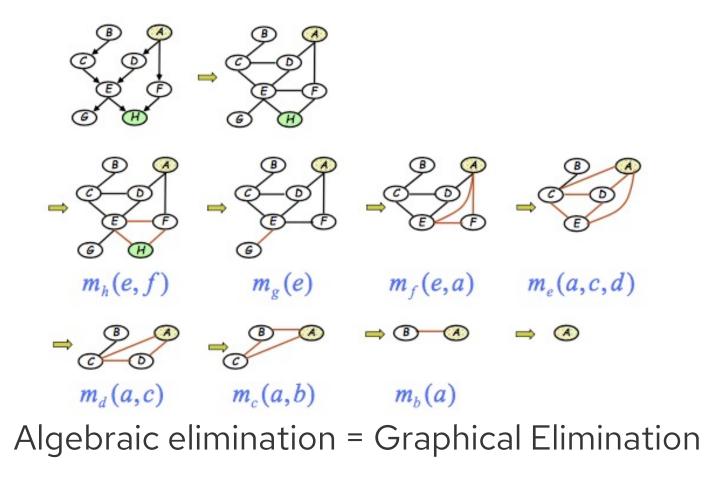
- => $P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)P(G|E)p_{H}(E,F)$ => $P(A)P(B)P(C|B)P(D|A)P(E|C,D)P(F|A)p_{H}(E,F)$
- => $P(A)P(B)P(C|B)P(D|A)P(E|C,D) p_F(A,E)$
- => $P(A)P(B)P(C|B)P(D|A)p_{E}(A,C,D)$
- $=> P(A)P(B)P(C|B)p_D(A,C)$
- $\Rightarrow P(A)P(B)p_{C}(A,B)$

Step 7: Eliminate B

$$p_B(A) = \sum_b P(B = b|A) p_C(A, B)$$
 => P(A)p_B(A)

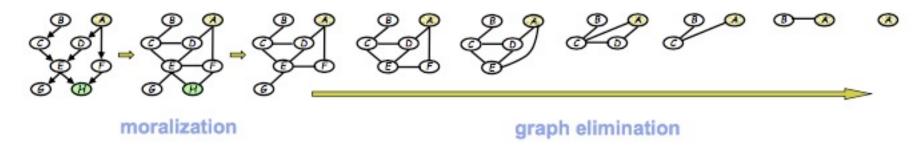


Elimination Cliques

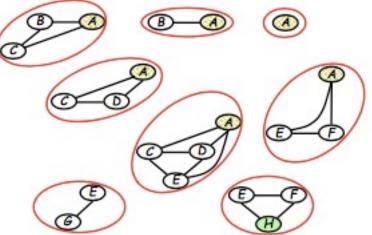


Understanding Variable Elimination

• A graph elimination algorithm



 Intermediate terms correspond to the cliques resulted from elimination



Questions?

