

Probabilistic Graphical Models & Probabilistic Al

Ben Lengerich

Lecture 10: Structure Learning

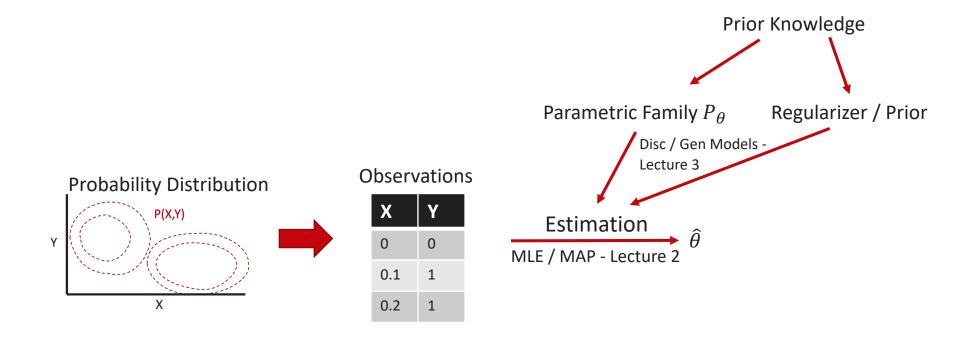
February 27, 2025

Reading: See course homepage

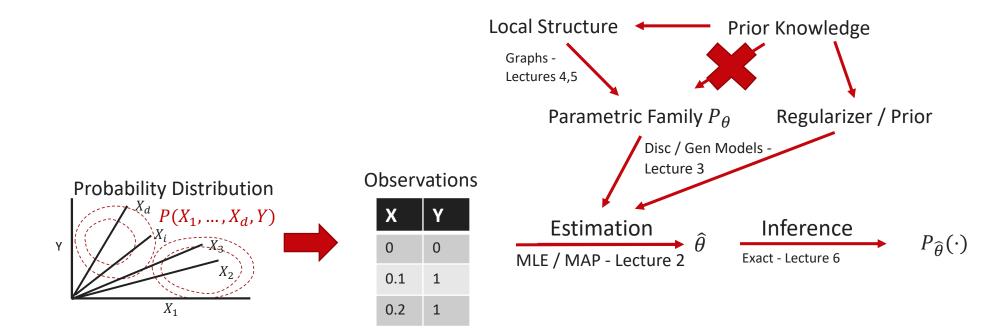
Logistics

- Quiz graded, up on Canvas
 - Office hours to review.
 - **Average:** 89%
 - Min: 59%
 - Max: 100%
- HW3 due Mar 1
- Next week:
 - Project Proposal due Mar 7
 - HW4 due Mar 8
- Later:
 - **HW5** due **Mar 15**
 - Midterm Mar 20

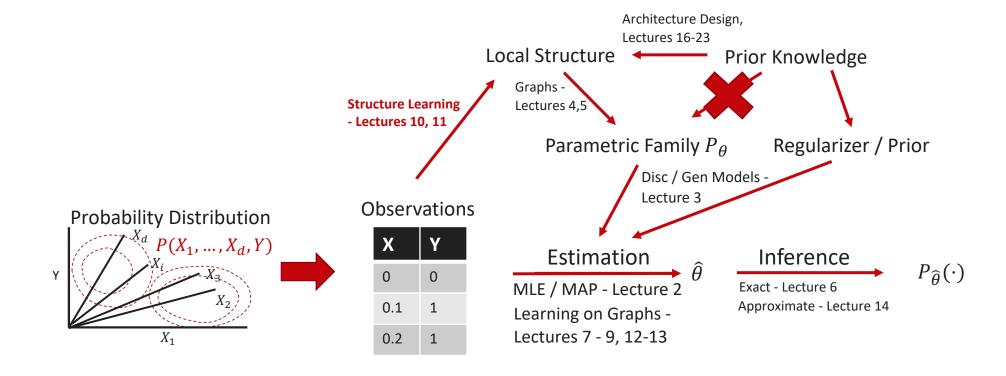
A Brief Recap of our Roadmap



A Brief Recap of our Roadmap



A Brief Recap of our Roadmap



Today

- Structure Learning
 - Learning Tree BNs
 - Learning Pairwise MRFs

Structure Learning

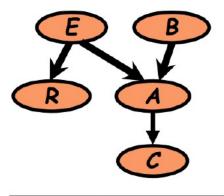
Learning in Graphical Models

 Goal: Given a set of independent samples (assignments to random variables), find the best Bayesian Network (both DAG and CPDs)

$$(B,E,A,C,R) = (T,F,F,T,F)$$

 $(B,E,A,C,R) = (T,F,T,T,F)$

... (B,E,A,C,R) = (F,T,T,T,F)



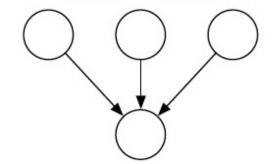
Structure learning

Ε	В	P(A	<i> E,B)</i>
e	Ь	0.9	0.1
e	Ь	0.2	8.0
e	<u>b</u>	0.9	0.1
e	Б	0.01	0.99

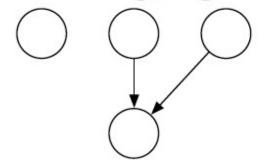
Parameter learning

Why aim for accurate structure?

True Structure

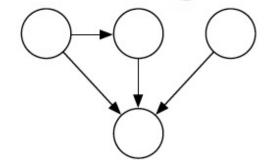


Missing Edge



- Cannot be compensated for by fitting parameters
- Wrong assumptions about domain structure

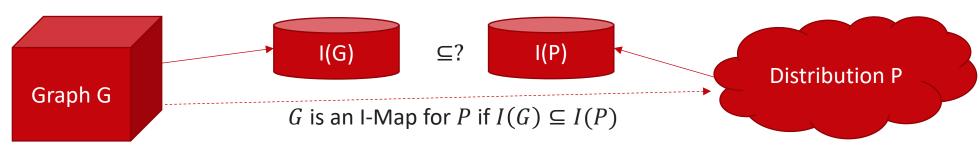
More Edges



- Increases the number of parameters to be estimated
- Wrong assumptions about domain structure

Recall: I-Maps

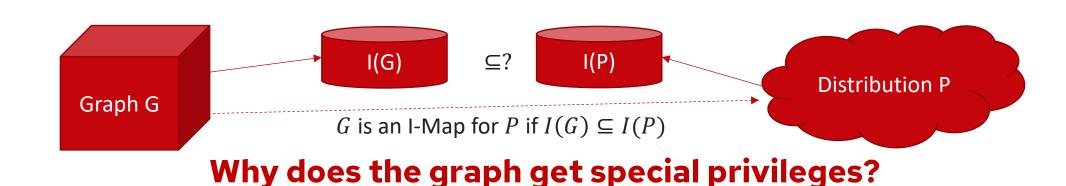
- Independence set: Let P be a distribution over X. We define I(P) to be the set of independences $(X \perp Y \mid Z)$ that hold in P.
- I-Map: Let G be any graph object with an associated independence set I(G). We say that G is an **I-map** for an independence set I if $I(G) \subseteq I$.
- I-Map of Distribution: We say G is an I-map for P if G is an I-map for I(P), when we use I(G) as the associated independence set.



Why does the graph get special privileges?

The I-Map view of Structure Learning

- We are looking for a graph G such that $I(G) \subseteq I(P)$
- This gets easier the looser we permit the inequality to be.
 - Trivial: fully-connected. No structure learning needed.
 - Hard: Perfect I-Map (no extra edges in graph).



Information Theoretic Interpretation

$$\begin{split} \boldsymbol{\ell}(\theta_{G},G;D) &= \log p(D \mid \theta_{G},G) \\ &= \log \prod_{n} \left(\prod_{i} p(\boldsymbol{x}_{n,i} \mid \boldsymbol{x}_{n,\pi_{i}(G)}, \theta_{i\mid \pi_{i}(G)}) \right) \\ &= \sum_{i} \left(\sum_{n} \log p(\boldsymbol{x}_{n,i} \mid \boldsymbol{x}_{n,\pi_{i}(G)}, \theta_{i\mid \pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{x_{i},\boldsymbol{x}_{\pi_{i}(G)}} \frac{count(\boldsymbol{x}_{i},\boldsymbol{x}_{\pi_{i}(G)})}{M} \log p(\boldsymbol{x}_{i} \mid \boldsymbol{x}_{\pi_{i}(G)}, \theta_{i\mid \pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{x_{i},\boldsymbol{x}_{\pi_{i}(G)}} \hat{p}(\boldsymbol{x}_{i},\boldsymbol{x}_{\pi_{i}(G)}) \log p(\boldsymbol{x}_{i} \mid \boldsymbol{x}_{\pi_{i}(G)}, \theta_{i\mid \pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{x_{i},\boldsymbol{x}_{\pi_{i}(G)}} \hat{p}(\boldsymbol{x}_{i},\boldsymbol{x}_{\pi_{i}(G)}) \log \frac{\hat{p}(\boldsymbol{x}_{i},\boldsymbol{x}_{\pi_{i}(G)}, \theta_{i\mid \pi_{i}(G)})}{\hat{p}(\boldsymbol{x}_{\pi_{i}(G)})} \frac{\hat{p}(\boldsymbol{x}_{i})}{\hat{p}(\boldsymbol{x}_{i})} \right) \\ &= M \sum_{i} \left(\sum_{x_{i},\boldsymbol{x}_{\pi_{i}(G)}} \hat{p}(\boldsymbol{x}_{i},\boldsymbol{x}_{\pi_{i}(G)}) \log \frac{\hat{p}(\boldsymbol{x}_{i},\boldsymbol{x}_{\pi_{i}(G)}, \theta_{i\mid \pi_{i}(G)})}{\hat{p}(\boldsymbol{x}_{\pi_{i}(G)})} - M \sum_{i} \left(\sum_{x_{i}} \hat{p}(\boldsymbol{x}_{i}) \log \hat{p}(\boldsymbol{x}_{i}) \right) \right) \\ &= M \sum_{i} \hat{I}(\boldsymbol{x}_{i},\boldsymbol{x}_{\pi_{i}(G)}) - M \sum_{i} \hat{H}(\boldsymbol{x}_{i}) \end{split}$$

Information Theoretic Interpretation

$$\ell(\theta_G, G; D) = \log p(D \mid \theta_G, G)$$

$$= M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)}) - M \sum_{i} \hat{H}(x_i)$$
Mutual information Entropy of x_i between x_i and its parents

- As we match x_i and parents better, the mutual information increases.
- Problems?
- Adding edges always helps!

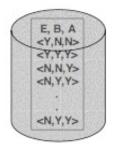
Different approaches to structure learning

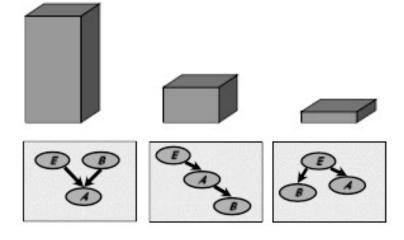
- Two main problems:
 - Likelihood is maximized for fully-connected graph, so we don't want to just maximize likelihood alone.
 - Finding optimal BN structure is an **NP-hard** problem if allowed to be non-tree.
- Many heuristics but no "guarantees" of returning the perfect structure.
- Can get some guarantees if we make assumptions:
 - For tree BNs: Chow-Liu algorithm
 - For pairwise MRFs: Covariance selection, neighborhood-selection

Score-based Learning

Define a scoring function that evaluates how well a structure

matches the data:

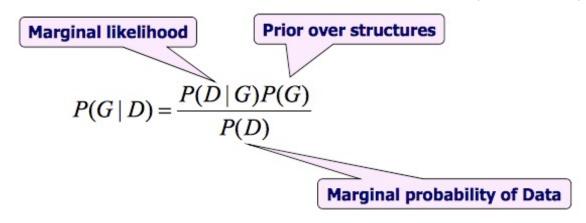




Search for a structure that maximizes the score

Bayesian Score

- Let's take a Bayesian approach
 - Place a distribution over our "uncertain" elements (G and θ)



P(D) does not depend on the network

Bayesian score for G

$$Score_B(G:D) = \log P(D \mid G) + \log P(G)$$

Bayesian Score cont'd

Bayesian score for G

$$Score_B(G:D) = \log P(D \mid G) + \log P(G)$$

- Our choice of prior P(G) has implications.
- Example: Let the edges have Dirichlet priors. Then as the number of configurations $M \to \infty$,

$$\log P(D | G) = l(\hat{\theta}_G : D) - \frac{\log M}{2} Dim(G) + O(1)$$

Dim(G): number of independent parameters in G

Tradeoff between fit to vs. data and complexity

Bayesian Information Criterion (BIC)

• Bayesian score gives Bayesian Information Criterion:

$$Score_{BIC}(G:D) = l(\hat{\theta}_G:D) - \frac{\log M}{2}Dim(G)$$

Structure Learning of Tree BNs

Tree BNs

- Let's assume at most one parent per variable
- Why trees?
 - Sparse
 - No V-structures →
 - Can solve the optimization problem with a greedy algorithm

Chow-Liu tree learning algorithm

• Start by calculating Mutual Information between every pair of variables X_i and X_i $count(x_i, x_j)$

$$\hat{p}(X_i, X_j) = \frac{count(x_i, x_j)}{M}$$

$$\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{p}(x_i, x_j) \log \frac{\hat{p}(x_i, x_j)}{\hat{p}(x_i) \hat{p}(x_j)}$$

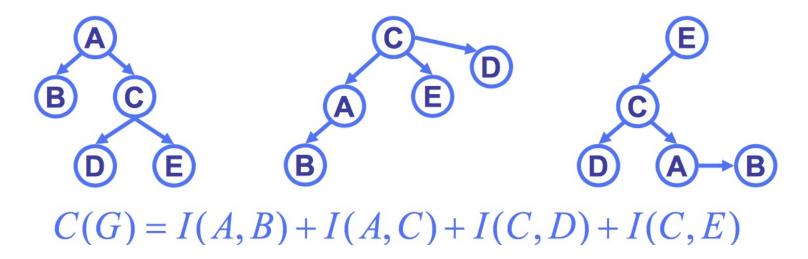
- Compute maximum weight spanning tree (Kruskal)
- Guarantees to maximize objective function:

$$\ell(\theta_G, G; D) = \log \hat{p}(D \mid \theta_G, G)$$

$$= M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)}) - M \sum_{i} \hat{H}(x_i) \qquad \Longrightarrow \qquad C(G) = M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)})$$

Chow-Liu tree learning algorithm: directionality

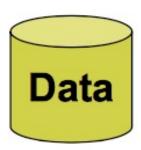
- How to pick direction of edges?
- Pick any node as root, do BFS to define directions



• Can't tell the difference between competing root nodes

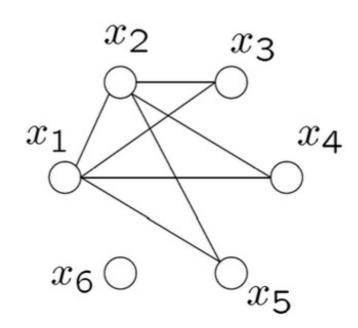
Structure Learning of UGMs

Learning Undirected Graphical Models



$$(x_1^{(1)},...,x_n^{(1)})$$

 $(x_1^{(2)},...,x_n^{(2)})$
...
 $(x_1^{(M)},...,x_n^{(M)})$



Pairwise MRFs

Pairwise MRF:

$$P(X) \propto \prod_{i} \psi_{i}(X_{i}) \prod_{i,j} \psi_{i,j}(X_{i}, X_{j})$$

- Gaussian Graphical Model:
 - Let $\psi_i(X_i) = \exp(\theta_i X_i)$, $\psi_{i,j}(X_i, X_j) = \exp(\theta_{ij} X_i X_j)$
 - Then:

$$P(X \mid \theta) \propto \exp\left(\sum_{i} \theta_{i} X_{i} + \sum_{i,j} \theta_{ij} X_{i} X_{j}\right)$$

Gaussian Graphical Model

- Gaussian Graphical Model:
 - Let $\psi_i(X_i) = \exp(\theta_i X_i)$, $\psi_{i,j}(X_i, X_j) = \exp(\theta_{ij} X_i X_j)$
 - Then:

$$P(X \mid \theta) \propto \exp\left(\sum_{i} \theta_{i} X_{i} + \sum_{i,j} \theta_{ij} X_{i} X_{j}\right)$$

• This is a Multivariate Gaussian density:

$$p(x|\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right]$$

• for $\mu = 0$ and $\theta = \Sigma^{-1} = Q$.

The covariance and precision matrices

• Covariance matrix \sum

$$\Sigma_{i,j} = 0 \implies X_i \perp X_j \quad \text{or} \quad p(X_i, X_j) = p(X_i) p(X_j)$$

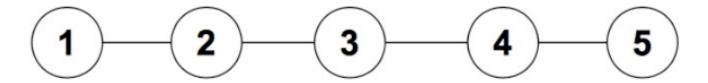
- What is the graphical model interpretation?
 Marginal independence / Correlation graph
- Precision matrix $\,Q=\Sigma^{-1}\,$

$$Q_{i,j} = 0 \Rightarrow X_i \perp X_j | \mathbf{X}_{-ij} \text{ or } p(X_i, X_j | \mathbf{X}_{-ij}) = p(X_i | \mathbf{X}_{-ij}) p(X_j | \mathbf{X}_{-ij})$$

What is the graphical model interpretation?

Conditional independence / Markov graph

Precision vs. Covariance



$$\Sigma^{-1} = \begin{pmatrix} 1 & 6 & 0 & 0 & 0 \\ 6 & 2 & 7 & 0 & 0 \\ 0 & 7 & 3 & 8 & 0 \\ 0 & 0 & 8 & 4 & 9 \\ 0 & 0 & 0 & 9 & 5 \end{pmatrix}$$

$$\Sigma^{-1} = \begin{pmatrix} 1 & 6 & 0 & 0 & 0 \\ 6 & 2 & 7 & 0 & 0 \\ 0 & 7 & 3 & 8 & 0 \\ 0 & 0 & 8 & 4 & 9 \\ 0 & 0 & 0 & 9 & 5 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 0.10 & 0.15 & -0.13 & -0.08 & 0.15 \\ 0.15 & -0.03 & 0.02 & 0.01 & -0.03 \\ -0.13 & 0.02 & 0.10 & 0.07 & -0.12 \\ -0.08 & 0.01 & 0.07 & -0.04 & 0.07 \\ 0.15 & -0.03 & -0.12 & 0.07 & 0.08 \end{pmatrix}$$

$$\Sigma_{15}^{-1} = 0 \Leftrightarrow X_1 \perp X_5 | X_{nbrs(1) \text{ or } nbrs(5)}$$

$$\Rightarrow$$

$$X_1 \perp X_5 \Leftrightarrow \Sigma_{15} = 0$$

Example

$$Q = \begin{pmatrix} * & * & * & * & * & 0 \\ * & * & * & * & * & 0 \\ * & * & * & 0 & 0 & 0 \\ * & * & 0 & * & 0 & 0 \\ * & * & 0 & 0 & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * & * \end{pmatrix}$$

If we can estimate a sample covariance, then we can estimate $Q = \hat{\Sigma}^{-1}$

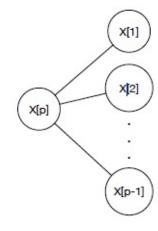
What if the number of dimensions > number of data points?

Recall Lasso

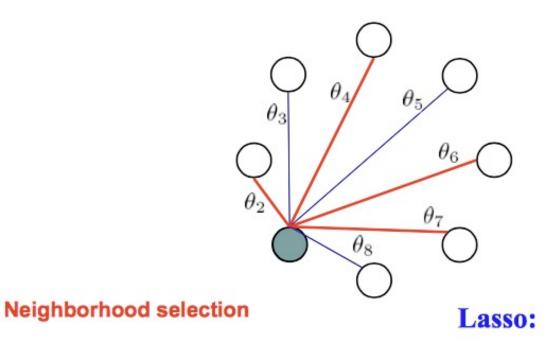
$$\hat{\theta}_i = \arg\min_{\theta_i} l(\theta_i) + \lambda_1 || \theta_i ||_1$$

where
$$l(\theta_i) = \log P(y_i|\mathbf{x}_i, \theta_i)$$
.

Let's apply Lasso for each graph regression:



Graph Regression



Gives graph structure.

$$\hat{\theta} = \arg\min_{\theta} \sum_{t=1}^{I} l(\theta) + \lambda_1 || \theta ||_1$$

Can we do graph regression for BNs?

Yes! Instead of raw Lasso, use matrix exponential to regularize toward DAG structure:

Theorem 1. A matrix $W \in \mathbb{R}^{d \times d}$ is a DAG if and only if

$$h(W) = \operatorname{tr}\left(e^{W \circ W}\right) - d = 0,\tag{5}$$

where \circ is the Hadamard product and e^A is the matrix exponential of A. Moreover, h(W) has a simple gradient

$$\nabla h(W) = \left(e^{W \circ W}\right)^T \circ 2W,\tag{6}$$

and satisfies all of the desiderata (a)-(d).

DAGs with NO TEARS: Continuous Optimization for Structure Learnin

Xun Zheng¹, Bryon Aragam¹, Pradeep Ravikumar¹, Eric P. Xing^{1,2}

¹Carnegie Mellon University ²Petuum Inc.

(xunzheng, naragam, pradeepr, epxing)@cs.cmu.edu

Abst

Estimating the structure of directed acycle graphs (DMGs, does hown on Bersch under structured) as a facility graphents into the read-space of DMGs is combinated and scales superexponentially with the number of nodes. Estimating agreement of the combination of

1 Introduction

Learning directed acyclic graphs (DAGs) from data is an NP-hard problem [8, 11], owing mainly to the combinatorial acyclicity constraint that is difficult to enforce efficiently. At the same time, DAGs are popular models in practice, with applications in biology [33], genetics [49], machine learning [22], and causal inference [42]. For this reason, the development of new methods for learning DAGs remains a control chellman in mechina learning and existing the control of the properties of the control of the cont

In this paper, we propose a new approach for score-based learning of DAGs by convertir traditional combinatorial optimization problem (left) into a continuous program (right):

$$\min_{\substack{W \in \mathbb{R}^{t \times d} \\ \text{subject to } G(W) \in \mathsf{DAGs}}} F(W) \iff \min_{\substack{W \in \mathbb{R}^{t \times d} \\ \text{subject to } h(W) = 0,}} F(W)$$

where C(V) is the δ -node graph induced by the verighted adjacency matrix $V_i : F : X^{d_i d_i} - \mathbb{R}$ is a $V_i : X^{d_i d_i} - \mathbb{R}$ in $V_i : X^{d_i d_i} - \mathbb{R}$ in $V_i : X^{d_i d_i} - \mathbb{R}$ in $V_i : X^{d_i d_i} - \mathbb{R}$ in a support of $V_i : X^{d_i} - \mathbb{R}$ in a morphological point $V_i : X^{d_i} - \mathbb{R}$ in a morphological point $V_i : X^{d_i} - \mathbb{R}$ in a morphological point $V_i : X^{d_i} - \mathbb{R}$ in a morphological point $V_i : X^{d_i} - \mathbb{R}$ in $V_i : X^{d_i} - \mathbb{R}$

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal,

[Zheng 2018]

Questions?

