Probabilistic Graphical Models & Probabilistic Al

Ben Lengerich

Lecture 14: Markov Chain Monte Carlo

March 13, 2025

Reading: See course homepage

Logistics

- Next week:
 - HW5 due Tuesday, March 18.
 - Midterm exam Thursday, March 20 in-class.
 - Study guide released.
- Looking ahead:
 - Project midway report due April 11.
 - Updated expectations on course website.

Today

- Approximate Inference, Monte Carlo Methods
- Markov Chain Monte Carlo
 - Metropolis-Hastings
 - Gibbs Sampling

Approximate Inference

A Brief Recap of our Roadmap

A Brief Recap of our Roadmap

A Brief Recap of our Roadmap

Inference

- Inference
 - How do I answer questions/queries according to my model and/or based on observed data?

e.g. $P_M(X_i|D)$

- We have seen exact inference:
 - $P_M(X_i|D)$ is factorized according to graph structure
 - Computational difficulty can be changed by variable elimination order

What should we do if $P_M(X_i|D)$ is a very complicated distribution? \rightarrow Approximate inference

Approximate Inference

- Variational Inference
 - Mean-field: Replace $P_M(X_i|D)$ with:

 $\max_{q} \exp\left(E_{q(z)}[\log P(X, Z|D)] - E_{q(z)}[\log q(Z)]\right)$

What should we do if the approximation class q is too far from the actual p?

→ Monte Carlo methods

Monte Carlo Methods

How to define a distribution?

- Parametric family with specific parameter values.
- Collection of samples

Monte Carlo methods: define dist by samples

- Draw random samples from desired distribution
- Yield a stochastic representation of desired distribution

•
$$E_p[f(x)] = \frac{\sum_m f(X_m)}{|m|}$$

- Asymptotically exact
- Challenges:
 - How to draw samples from desired distribution?
 - How to know we've sampled enough?

Why "Monte Carlo"?

- Stanislaw Ulam
 - Manhattan Project
 - Inspired by his uncle's gambling habits

Monte Carlo casino from "Goldeneye"

How to draw samples from a distribution?

- Suppose we have a generator function $g(\cdot)$ that gives us samples from Uniform(0, 1)
- How do we generate samples from $Bernoulli(\theta)$?
 - Draw x from $g(\cdot)$. If $x > 1 \theta \Rightarrow 1$, else 0.
- How do we generate samples from $N(\mu, \sigma^2)$?
 - Precompute k bins such that each bin has the same AUC.
 - Draw x from $g(\cdot)$. Map x to a bin.
 - Draw y from $g(\cdot)$. Scale y to the width of chosen bin and output y.

Monte Carlo Methods

- Direct sampling
- Rejection sampling
- Likelihood weighting
- Markov chain Monte Carlo (MCMC)

Rejection Sampling

- Instead of sampling from *P*(*X*), sample *x*^{*} from *Q*(*X*) and accept sample with probability:
 - $P_{accept}(x^*) = \frac{P(x^*)}{MQ(x^*)'}$, where *M* is some constant such that $P(x) \le MQ(x) \forall x$
- Works with un-normalized P(X), too.

Unnormalized Importance Sampling

- Instead of hard **rejecting** samples, we can just **reweight** them: $E_P[f(X)] = \int_x P(x)f(x)dx = \int_x \frac{P(x)}{Q(x)}Q(x)f(x)dx = E_Q\left[\frac{P(x)}{Q(x)}f(x)\right]$
- Approximate with empirical:

$$E_P[f(X)] \approx \frac{1}{n} \sum_{i=1,\dots,n} f(x_i) w(x_i)$$

where
$$x_i \sim Q$$
 and $w_i = \frac{P(x_i)}{Q(x_i)}$

What characteristic do we need for this to work?

Normalized Importance Sampling

• Instead of needing access to the normalized probability distribution P, we can also perform importance sampling with an un-normalized $\tilde{P} = aP$ by normalizing the weights according to the sample:

•
$$\widetilde{w_i} = \frac{w_i}{\sum_i w_i}$$

Weighted resampling

- Problem of importance sampling:
 - Performance depends on how well Q matches P.
 - If P(x)f(x) is strongly varying and has a significant proportion of its mass concentrated in a small region, ratio will be dominated by a few samples.
- Solution: use a heavy-tailed Q and weighted resampling.

Limitations of "simple" Monte Carlo

- Hard to get rare events in high-dimensional spaces
- We need a good proposal Q(x) that is not very different than P(x)
- What if we had an adaptive proposal Q(x)?

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo

MCMC algorithms feature adaptive proposals

- Instead of Q(x') use Q(x'|x) where x' is the new state being sampled and x is the previous sample
- As x changes Q(x'|x) can also change

Importance sampling with a (bad) proposal Q(x)

MCMC with adaptive

Metropolis-Hastings

Ŵ

MCMC: Metropolis-Hastings

- Draw a sample x' from Q(x'|x) where x is the previous sample
- The new sample x' is accepted or rejected with some probability A(x'|x)

• Acceptance prob:
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- A(x'|x) is like a ration of importance sampling weights
 - P(x')/Q(x'|x) is the importance weight for x', P(x)/Q(x|x') is the importance weight for x
 - We divide the importance weight for x' by that of x
 - Notice that we only need to compute P(x')/P(x) rather than P(x') or P(x)
- A(x'|x) ensures that after sufficiently many draws, our samples come from the true distribution.

MCMC: Metropolis-Hastings

- 1. Initialize starting state $x^{(0)}$, set t = 0
- 2. Burn-in: while samples have "not converged"
 - **X=X**^(t)
 - t =t +1,
 - sample x* ~ Q(x*|x) // draw from proposal
 - sample u ~ Uniform(0,1) // draw acceptance threshold

- if
$$u < A(x^* | x) = \min\left(1, \frac{P(x^*)Q(x | x^*)}{P(x)O(x^* | x)}\right)$$

- **x**^(t) = **x*** // transition
 - else
- x^(t) = x
 // stay in current state
- Take samples from P(x) =
 - x(t+1) ← Draw sample (x(t))

Function Draw sample (x(t))

: Reset t=0, for t =1:N

Ben Lengerich © University of Wisconsin-Madison 2025

- We are trying to sample from a bimodal P(x)
- Let Q(x'|x) be a Gaussian centered on x

- We are trying to sample from a bimodal P(x)
- Let Q(x'|x) be a Gaussian centered on x

- We are trying to sample from a bimodal P(x)
- Let Q(x'|x) be a Gaussian centered on x

- We are trying to sample from a bimodal P(x)
- Let Q(x'|x) be a Gaussian centered on x

- We are trying to sample from a bimodal P(x)
- Let Q(x'|x) be a Gaussian centered on x

- We are trying to sample from a bimodal P(x)
- Let Q(x'|x) be a Gaussian centered on x

MCMC: Some theory

- The MH algorithm has a burn-in period
 - Initial samples are not truly from P
- Why are the MH samples guaranteed to be from P(x)?
 - The proposal Q(x'|x) keeps changing with the value of x; how do we know the samples will eventually come from P(x)?
- Why Markov Chain?

MCMC: Some theory

- Stationary distributions are of great importance in MCMC. Some notions
 - Irreducible: an MC is irreducible if you can get from any state x to any other state x' with probability x > 0 in a finite number of steps
 - Aperiodic: an MC is aperiodic if you can return to any state x at any time
 - Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic
- Ergodicity is important: it implies you can reach the stationary distribution no matter the initial distribution.

MCMC: Some theory

• Reversible (detailed balance): an MC is reversible if there exists a distribution $\pi(x)$ such that the detailed balance condition holds

$\pi(x')T(x \mid x') = \pi(x)T(x' \mid x)$

• Reversible MCs always have a stationary distribution

 $\pi(x')T(x \mid x') = \pi(x)T(x' \mid x)$ $\sum_{x} \pi(x')T(x \mid x') = \sum_{x} \pi(x)T(x' \mid x)$ $\pi(x')\sum_{x} T(x \mid x') = \sum_{x} \pi(x)T(x' \mid x)$ $\pi(x') = \sum_{x} \pi(x)T(x' \mid x)$ The last line is the definition of a stationary distribution!

Why does Metropolis-Hastings work?

• We draw a sample x' according to Q(x'|x) and then accept/reject according to A(x'|x). Hence the transition kernel is:

 $T(x' \mid x) = Q(x' \mid x)A(x' \mid x)$

• We can prove that MH satisfies detailed balance.

Why does Metropolis-Hastings work?

- Since MH satisfies detailed balance:
 - The MH algorithm leads to a stationary distribution P(x)
 - We defined P(x) to be the true distribution of x
 - Thus, MH eventually converges to the true distribution

Gibbs Sampling

- Gibbs Sampling is an MCMC algorithm that samples each random variable of a graphical model, one at a time
- GS is fairly easy to derive for many graphical models
- GS has reasonable computation and memory requirements (because we sample one r.v. at a time)

Gibbs Sampling

- 1. Suppose the graphical model contains variables x1,...,xn
- Initialize starting values for x1,...,xn
- 3. Do until convergence:
 - 1. Pick an ordering of the n variables (can be fixed or random)
 - 2. For each variable x_i in order:
 - Sample x from P(x_i | x₁, ..., x_{i-1}, x_{i+1}, ..., x_n), i.e. the conditional distribution of x_i given the current values of all other variables
 - Update x_i ← x

Questions?

