Probabilistic Graphical Models & Probabilistic Al

Ben Lengerich

Lecture 15: Review

March 18, 2025

Reading: See course homepage

Why GMs?

What's the point of GMs in the AI era?

- A language for communication
- A language for computation
- A language for development

Finite human

The Fundamental Questions

Representation

- How to encode our domain knowledge/assumptions/constraints?
- How to capture/model uncertainties in possible worlds?

Inference

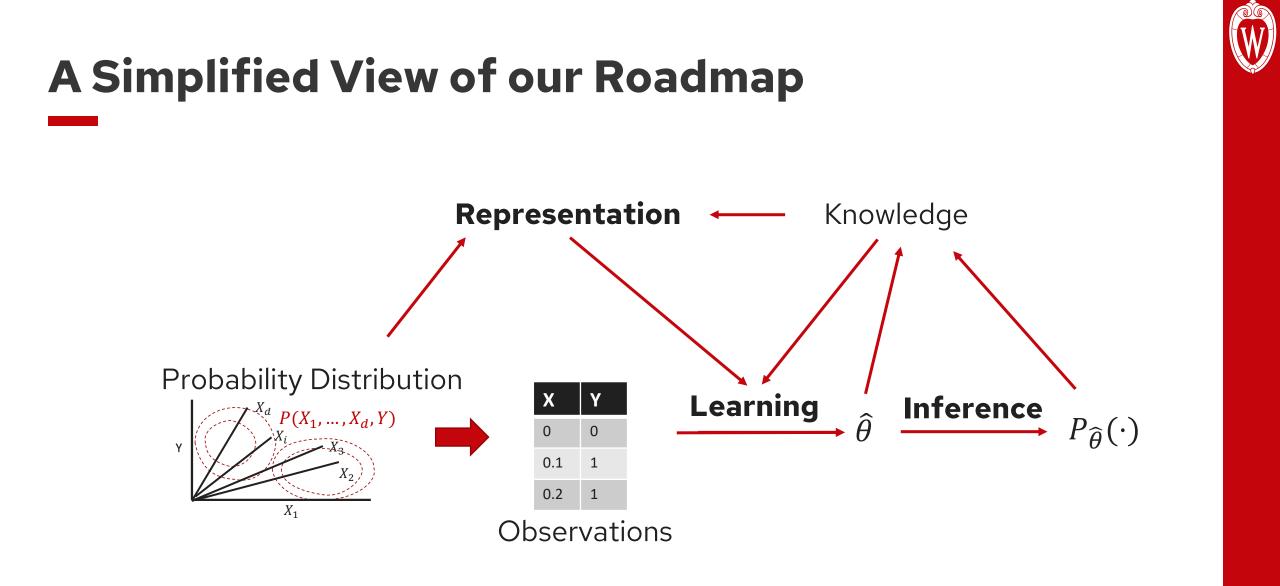
• How do I answer questions/queries according to my model and/or based on observed data?

e.g. $P(X_i|D)$

• Learning

• What model is "right" for my data?

e.g. $M = argmax_{M \in \mathcal{H}}F(D; M)$



Ben Lengerich © University of Wisconsin-Madison 2025

1. Representing GMs

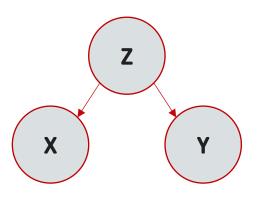
PGMs allow us to understand and structure data

- GM = Multivariate Objective Function + Structure
- PGM = Multivariate Statistics + Structure

• Formally: A PGM is a **family of distributions** on a set of random variables that are compatible with all the probabilistic independence propositions encoded by a **graph** that connects these variables.

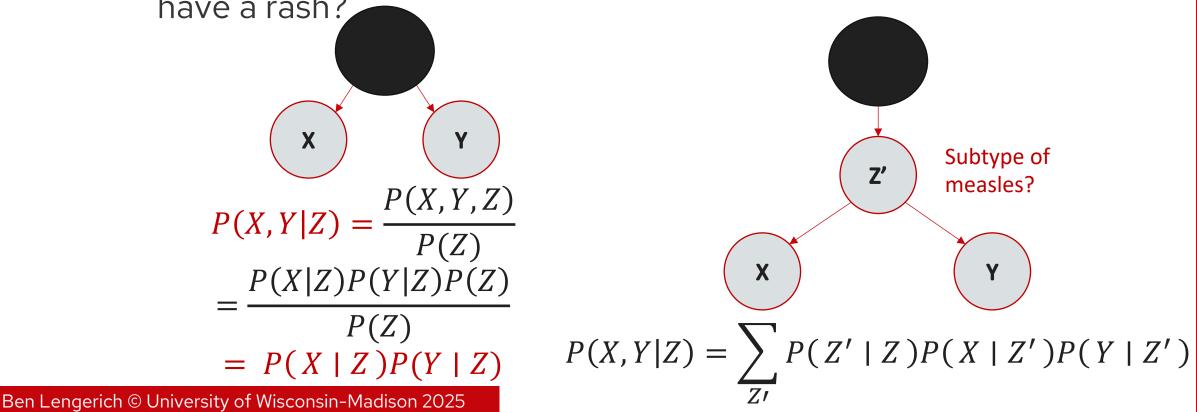
Conditional Independence

- Variables X and Y are **independent** if: P(X,Y) = P(X)P(Y)
 - Notation: $X \perp Y$
- Variables X and Y are conditionally independent given Z if: P(X, Y|Z) = P(X|Z)P(Y|Z)
 - Equivalently: P(X|Y,Z) = P(X,Z)
 - Notation: $X \perp Y \mid Z$



Example of Conditional Independence

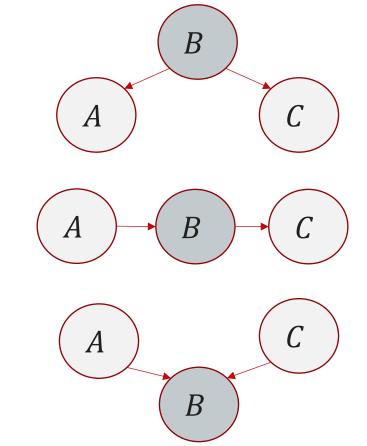
- Let X = Fever, Y = Rash, Z = Measles
- Given that a patient has measles, does knowing if they have a fever give us any additional information about whether they have a rash?



Local Structures compose graphs

- Common parent
 - Knowing B **decouples** A and C
 - $A \perp C \mid B$
- Cascade
 - Knowing B **decouples** A and C
 - $A \perp C \mid B$
- V-structure
 - Knowing B **couples** A and C
 - A can "explain away" C

Three foundational building blocks for creating complex BNs



1a. Representing PGMs: ->Directed GMs / Bayesian Networks

Bayesian Network (BN)

- A BN is a **directed acyclic graph** whose nodes represent the random variables and whose edges represent direct influence of one variable on another
- Provides the skeleton for representing a joint distribution compactly in a **factorized** way
- Compact representation of a set of conditional independence assumptions
- We can view the graph as encoding a **generative sampling process** executed by nature.

Bayesian Network (BN)

Factorization Theorem:

Given a DAG, the most general form of the probability distribution that is consistent with the graph factors according to:

$$P(X) = \prod_{i} P(X_i \mid X_{\pi_i})$$

where X_{π_i} is the set of parents of X_i .

A simple BN: Markov Chain

- Markov Chain
- Markov property: "The future state depends only on the present state, and not on past states"
- Parameters:
 - Transition Probability Matrix:
 - Initial State Distribution:

$$M_{ij} = P(X_t = j \mid X_{t-1} = i)$$

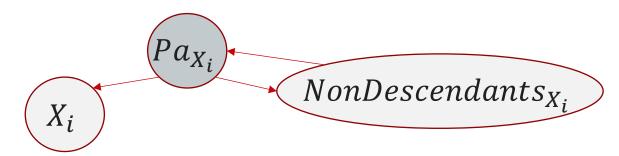
$$\pi_i = P(X_1 = i)$$

$$X_1 \qquad X_2 \qquad \dots \qquad X_{d-1} \qquad X_d$$
$$P(X) = P(X_1) \prod_{t=2} P(X_t \mid X_{t-1})$$

Independence assertions of BNs

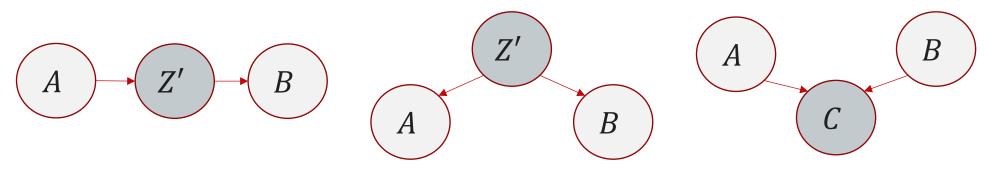
- In a BN, each node is independent of its non-descendants given its parents.
- Let Pa_{X_i} denote the parents of X_i in G and $NonDescendants_{X_i}$ denote the variables in the graph that are not descendants of X_i . Then G encodes the following set of *local conditional independence assumptions* $I_l(G)$:

 $I_{l}(G) = \{X_{i} \perp NonDescendants_{X_{i}} | Pa_{X_{i}}: \forall i\}$



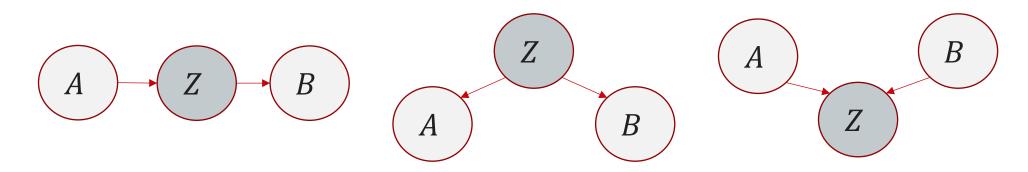
Independence assertions: Graph separation

- <u>D-separation criterion</u> for Bayesian networks [Pearl, 1988]
 - D for "directed" edges
 - **Definition:** A set of nodes *X* is d-separated (conditionally independent) from a set of nodes Y given a conditioning set *Z* iff every path between any nodes in *X* and any node in *Y* is **blocked** by *Z*.
 - A path between nodes *A* and *B* is **blocked** by *Z* if it contains at least one of the following structures:
 - Chain: $A \to Z' \to B$ for $Z' \in Z$
 - Fork: $A \leftarrow Z' \rightarrow B$ for $Z' \in Z$
 - Collider: $A \rightarrow C \leftarrow B$ for $C \notin Z$ AND no descendant of C is in Z



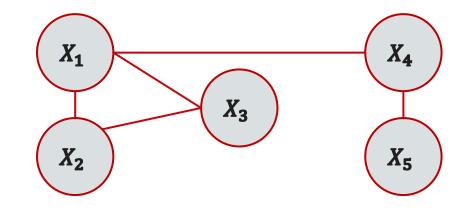
Non-Independence: Active Trails

- Causal: $A \rightarrow Z \rightarrow B$
 - Active iff *Z* is not observed.
- Common Cause: $A \leftarrow Z \rightarrow B$
 - Active iff *Z* is not observed.
- Collider: $A \rightarrow Z \leftarrow B$
 - Active iff Z OR one of Z's descendants is observed.



1b. Representing PGMs: Undirected GMs / Markov Random Fields

Undirected Graphical Models



- Pairwise relationships
- No explicit way to generate samples
- Contingency constraints on node configurations

Representing Undirected Graphical Models

An undirected graphical model represents a distribution P(X) defined by an undirected graph H and a set of positive potential functions ψ associated with the cliques of H such that:

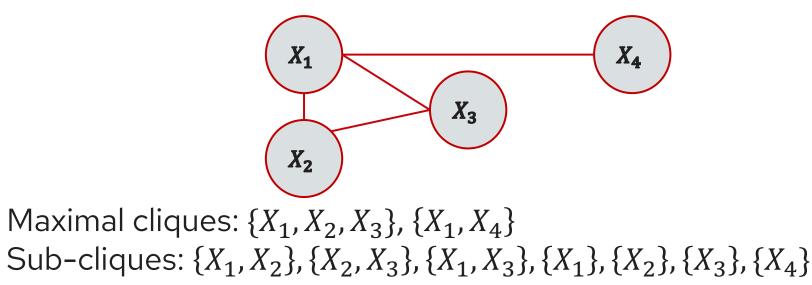
$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{c} \psi_c(X_C)$$

where Z represents the **partition function**: $Z = \sum_{X} \prod_{c} \psi_{c}(X_{c})$.

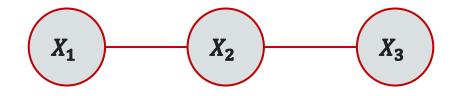
• The potential function can be understood as a "score" of the joint configuration

What is a clique?

- For $G = \{V, E\}$, a clique (complete subgraph) is a subgraph $G' = \{V' \subseteq V, E' \subseteq E\}$ such that nodes in V' are **fully connected**.
- A **maximal** clique is a clique such that any superset $V'' \supset V$ is *not* a clique.



Interpretation of Clique Potentials



- This model implies $X_1 \perp X_3 \mid X_2$, so joint must factorize as: $P(X_1, X_2, X_3) = P(X_2)P(X_1 \mid X_2)P(X_3 \mid X_2)$
- We could write as $P(X_1, X_2)P(X_3 | X_2)$ or $P(X_2, X_3)P(X_1 | X_2)$, but:
 - Cannot have all potentials be marginals
 - Cannot have all potential be conditionals
- Clique potentials can be thought of as general "compatibility" of their variables, but not as probability distributions.

Features

- A "feature" is a function that is non-zero for a few particular inputs and zero otherwise.
- Key idea: Instead of modeling all possible feature values in a big table, model specific groupings of feature values together.
- Example:
 - Let a clique correspond to three consecutive characters.
 - How would we define p(c1, c2, c3)?
 - All possible character combinations we need 26^3 1 parameters.
 - But there are sequences that are unlikely: kfd
 - Define a feature like "ing": 1 if c1=i,c2=n,c3=g. 0 otherwise.

Features as Potentials

- Each feature function can be converted to a potential by exponentiating it. We can multiply these together to get a clique potential. $\psi_c(c_1, c_2, c_3) = e^{\theta_{ing} f_{ing}} \times e^{\theta_{red} f_{red}} \times \dots$
- Example:

$$= \exp\left\{\sum_{k=1}^{K} \theta_k f_k(c_1, c_2, c_3)\right\}$$

- There is still an exponential number of settings, but only K parameters (θ_k)
- A nice benefit of undirected graphical models: we don't have to normalize each feature.

Combining Features

- Each feature function has a weight θ_k which represents the numerical strength of the feature and whether it increases or decreases the probability of a clique.
- The marginal over the clique is a generalized exponential family distribution (a GLM):

 $p(c_{1},c_{2},c_{3}) \propto \exp \left\{ \begin{array}{l} \theta_{ing} f_{ing}(c_{1},c_{2},c_{3}) + \theta_{red} f_{red}(c_{1},c_{2},c_{3}) + \\ \theta_{qu?} f_{qu?}(c_{1},c_{2},c_{3}) + \theta_{zzz} f_{zzz}(c_{1},c_{2},c_{3}) + \cdots \right\} \right\}$

• The features may be overlapping across cliques

$$\psi_c(\mathbf{x}_c) \stackrel{\text{def}}{=} \exp\left\{\sum_{i \in I_c} \theta_k f_k(\mathbf{x}_{c_i})\right\}$$

Feature-based model

- Joint distribution:
- We can drop sum over c:

• What are the sufficient statistics for this model?

 $p(\mathbf{x}) = \frac{1}{Z(\theta)} \prod_{c} \psi_{c}(\mathbf{x}_{c}) = \frac{1}{Z(\theta)} \exp\left\{\sum_{c} \sum_{i \in I_{c}} \theta_{k} f_{k}(\mathbf{x}_{c_{i}})\right\}$

 $p(\mathbf{x}) = \frac{1}{Z(\theta)} \exp\left\{\sum_{i} \theta_{i} f_{i}(\mathbf{x}_{c_{i}})\right\}$

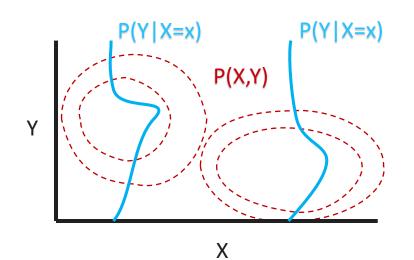
- The features
- We need to learn weighting parameters θ_k

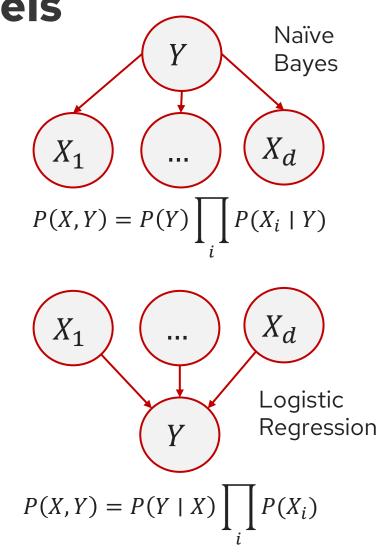
1c. Implications of GM Structure

Generative and Discriminative Models

- Generative:
 - Models the joint distribution P(X, Y).

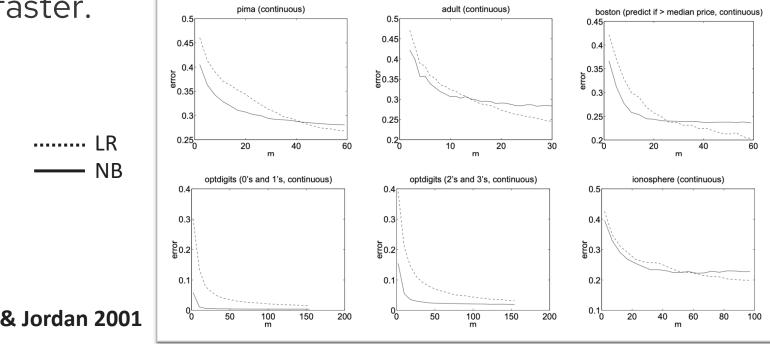
- Discriminative:
 - Models the conditional distribution P(Y|X).





Andrew Ng's Insight

 "While discriminative learning has lower asymptotic error, a generative classifier may also approach its (higher) asymptotic error much faster."



Andrew Ng's Insight

- "While discriminative learning has lower asymptotic error, a generative classifier may also approach its (higher) asymptotic error much faster."
- Underlying assumption of this statement:
 - Generative models of the form $P(X, Y, \theta)$ make more simplifying assumptions than do discriminative models of the form $P(Y|X, \theta)$.
 - Not always true
 - "So far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation **x** into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either $p(y|\mathbf{x})$ or $p(\mathbf{x}, y)$ for the data." Xue & Tittering 2008

Modern Deep Generative Models

Can we build massive-scale deep generative models that no longer require the constraints of simplifying assumptions?

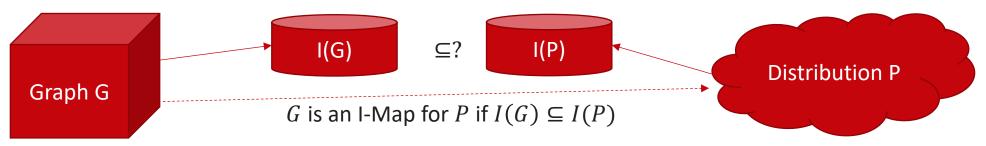
January 27, 2025:

Nvidia sheds almost \$600 billion in market cap, biggest one-day loss in U.S. history

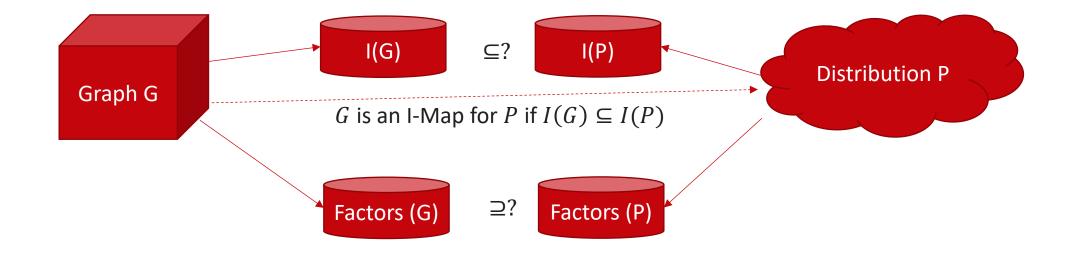
1d. I-Maps of PGMs

I-Maps

- Independence set: Let P be a distribution over X. We define I(P) to be the set of independences $(X \perp Y \mid Z)$ that hold in P.
- <u>I-Map</u>: Let G be any graph object with an associated independence set I(G). We say that G is an **I-map** for an independence set I if $I(G) \subseteq I$.
- I-Map of Distribution: We say G is an I-map for P if G is an I-map for I(P), when we use I(G) as the associated independence set.



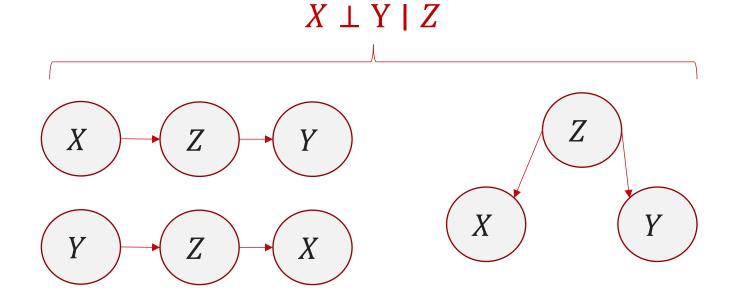
I-Maps and Factorization



Ben Lengerich © University of Wisconsin-Madison 2025

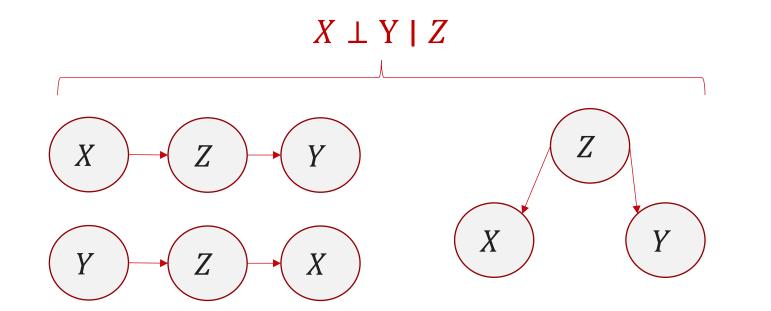
I-equivalence

• Definition of I-Equivalence: Two BN graphs G_1 and G_2 over X are *I*-equivalent if $I(G_1) = I(G_2)$.



Uniqueness of Graphs

• Very different graphs can be equivalent in that they encode the same set of conditional independence assertions.



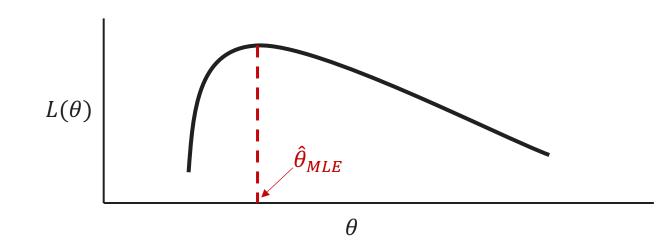
2. Learning GMs

Maximum Likelihood Estimation (MLE)

- Definition:
 - Find $\hat{\theta}$ that maximizes the likelihood of observing the given data. $\hat{\theta} = \operatorname{argmax}_{\theta} L(\theta)$ where $L(\theta) = P(\operatorname{data}|\theta)$.

Interpretation:

- $L(\theta)$: Probability of the observed data given θ .
- MLE chooses the parameter that makes the data most "likely."

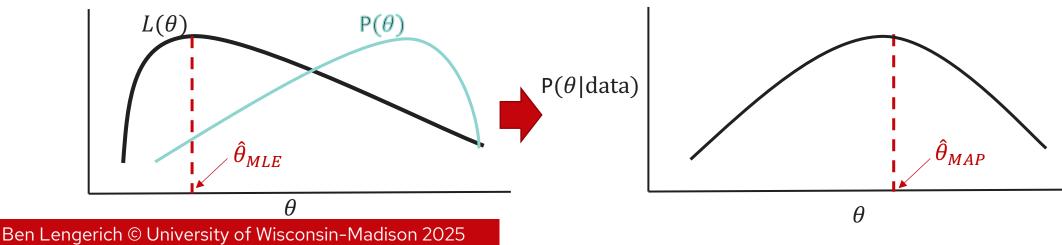


Maximum A Posteriori (MAP) Estimation

• Find

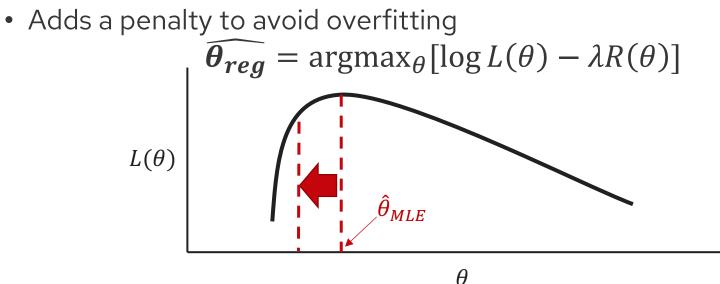
 $\hat{\theta}_{MAP} = argmax_{\theta} P(\theta | data) \propto argmax_{\theta} P(data | \theta) P(\theta)$

- $P(\text{data}|\theta)$: Likelihood
- $P(\theta)$: Prior belief about θ
- MLE ignores $P(\theta)$
- MAP incorporates prior information.



Regularization is MAP

MLE with Regularization:



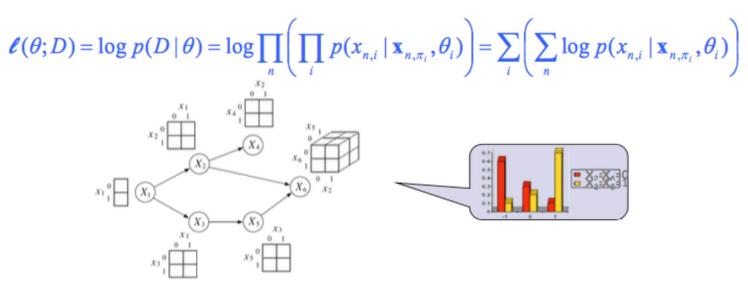
MAP as Penalized MLE:

• Let
$$P(\theta) \propto e^{-\lambda R(\theta)}$$
. Then
 $\widehat{\theta}_{MAP} = argmax_{\theta}[\log L(\theta) + \log P(\theta)] = \widehat{\theta}_{reg}$

2a. Parameter Learning in Fully-Observed BNs

MLE for general BNs

• If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the log-likelihood function decomposes into a sum of local terms, one per node



• MLE-based parameter estimation of GM reduces to local est. of each GLIM.

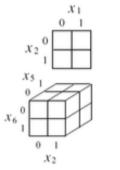
MLE for BNs with tabular CPDs

• Each CPD is represented as a table (multinomial) with

$$\theta_{ijk} \stackrel{\text{def}}{=} p(X_i = j \mid X_{\pi_i} = k)$$

- In case of multiple parents the CPD is a high-dimensional table
- The sufficient statistics are counts of variable configurations
- The log-likelihood is $\ell(\theta; D) = \log \prod_{i,j,k} \theta_{ijk}^{n_{ijk}} = \sum_{i,j,k} n_{ijk} \log \theta_{ijk}$
- And using a Lagrange multiplier to enforce that conditionals sum up to 1 we have: $\theta_{ijk}^{ML} = \frac{n_{ijk}}{n_{ijk}}$

$$\theta_{ijk}^{ML} = \frac{n_{ijk}}{\sum_{j'} n_{ij'k}}$$



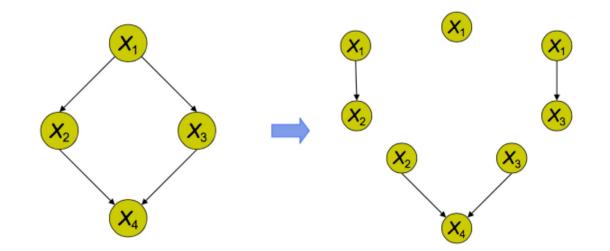
Ŵ

Decomposable likelihood of a BN

• Consider the GM:

 $p(x | \theta) = p(x_1 | \theta_1) p(x_2 | x_1, \theta_2) p(x_3 | x_1, \theta_3) p(x_4 | x_2, x_3, \theta_4)$

• This is the same as learning four separate smaller BNs each of which consists of a node an its parents.



2b. Parameter Learning in Fully-Observed Undirected GMs

MLE for Undirected GMs

 For undirected models, the log-likelihood does not decompose, because the normalization constant Z is a function of all parameters.

$$P(x_1,\ldots,x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

$$Z = \sum_{x_1, \dots, x_n} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

• The likelihood decomposes to give MLE conditions on clique probabilities:

 $p_{MLE}^{*}(\mathbf{x}_{c}) = \frac{m(\mathbf{x}_{c})}{N}$

- But UGMs are parameterized by ψ_c not p.
- In general, we need to do inference to learn parameters for undirected models, even in the fully observed case.

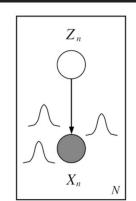
Case 1: The model is decomposable

- If the model is decomposable and all the clique potentials are defined on maximal cliques, then:
 - The MLE of clique potentials are equal to the empirical marginals (or conditionals) of the corresponding clique.
- Example: Chain $X_1 X_2 X_3$ $p_{MLE}(X1, X2, X3) = \frac{\tilde{p}(X1, X2)\tilde{p}(X2, X3)}{\tilde{p}(X2)}$ $p_{MLE}(X1, X2) = \sum_{X3} \tilde{p}(X1, X2, X3) = \tilde{p}(X1|X2) \sum_{X3} \tilde{p}(X2, X3) = \tilde{p}(X1, X2)$ $p_{MLE}(X2, X3) = \tilde{p}(X2, X3)$ $\hat{\psi}_{12}^{MLE}(\mathbf{x}_1, \mathbf{x}_2) = \tilde{p}(\mathbf{x}_1, \mathbf{x}_2)$ $\hat{\psi}_{23}^{MLE}(\mathbf{x}_2, \mathbf{x}_3) = \frac{\tilde{p}(\mathbf{x}_2, \mathbf{x}_3)}{\tilde{p}(\mathbf{x}_2)} = \tilde{p}(\mathbf{x}_3|\mathbf{x}_2)$

Case 2: The model is NON-decomposable

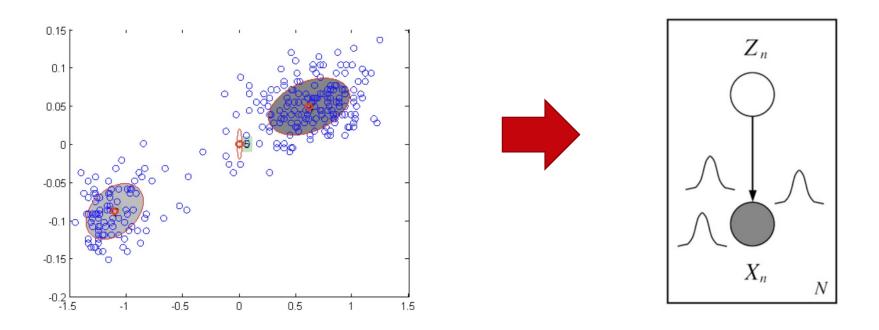
- If the model is **non-decomposable** (clique potentials are defined on non-maximal cliques), then we cannot equate MLE of clique potentials to empirical marginals (or conditionals).
- Iterative Proportional Fitting (IPF):

2c. Parameter Learning in Partially-Observed GMs



Partially-Observed GMs: Mixture models

- A density model p(x) may be multi-modal
- Can we model it as a mixture of uni-modal distributions?



Unobserved Variables

- A variable can be unobserved (latent) because:
 - It is difficult or impossible to measure
 - e.g. Causes of a disease, evolutionary ancestors
 - It is only sometimes measured
 - e.g. faulty sensors
 - It is an imaginary quantity meant to provide some simplified but useful view of the data generation process
 - e.g. Mixture assignments
- Discrete latent variables can be used for as cluster assignments
- Continuous latent variables can be used for dimensionality reduction

Why is learning with latent variables harder?

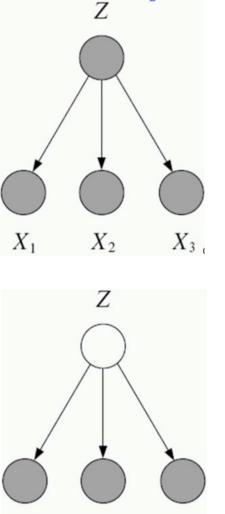
• In fully-observed IID settings, the log-likelihood decomposes into a sum of local terms:

 $\boldsymbol{\ell}_{c}(\boldsymbol{\theta}; D) = \log p(x, z \mid \boldsymbol{\theta}) = \log p(z \mid \boldsymbol{\theta}_{z}) + \log p(x \mid z, \boldsymbol{\theta}_{x})$

• With latent variables, all parameters become coupled via marginalization

$$\ell_{c}(\theta; D) = \log \sum_{z} p(x, z \mid \theta) = \log \sum_{z} p(z \mid \theta_{z}) p(x \mid z, \theta_{x})$$

Sum over z is inside log



 X_2

 X_3

 X_1

Strategy:

- 1. Guess value of Z
- 2. Apply MLE to estimate best model parameters based on Z
- 3. Inference most likely Z based on MLE parameter estimates
- 4. Return to step 2 until Z stops changing

Expectation-Maximization algorithm

- E-step:
 - Compute the expected value of the sufficient statistics of the hidden variables under current estimates of parameters

- M-step:
 - Using the current expected value of the hidden variables, compute the parameters that maximize the likelihood.

Why does EM work?

$$p(z|x,\theta) = \frac{p(x,z|\theta)}{p(x|\theta)}$$

$$\log p(z|x,\theta) = \log p(x,z|\theta) - \log p(x|\theta)$$

$$E_{z\sim q}[\log p(z|x,\theta)] = E_{z\sim q}[\log p(x,z|\theta)] - \log p(x|\theta)$$

$$KL(q(z|x) \parallel p(z|x,\theta)) = E_{z\sim q}\left[\log \frac{q(z|x)}{p(z|x,\theta)}\right]$$

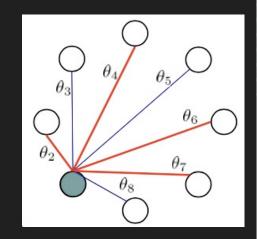
$$E_{z\sim q}[\log p(z|x,\theta)] = E_{z\sim q}[\log q(z|x)] - KL(q(z|x) \parallel p(z|x,\theta))$$

$$E_{z\sim q}[\log p(x,z|\theta)] - \log p(x|\theta) = E_{z\sim q}[\log q(z|x)] - KL(q(z|x) \parallel p(z|x,\theta))$$

$$\log p(x|\theta) = E_{z\sim q}[\log p(x,z|\theta)] - E_{z\sim q}[\log p(x,z|\theta)] + H(q) + KL(q(z|x) \parallel p(z|x,\theta))$$

EM: Let
$$q_t(z \mid x) = p(z \mid x, \theta_t)$$
. Then at convergence:
 $\log p(x \mid \theta) = E_{z \sim q_t} [\log p(x, z \mid \theta)] + H(q_t) + 0$
 $Q(\theta', \theta_t) = E_{z \sim p(z \mid \theta_t)} [\log p(x, z \mid \theta')]$
 $\theta_{t+1} = \operatorname{argmax}_{\theta'} Q(\theta', \theta_t)$

2d. Structure Learning



Max Likelihood doesn't inform us about structure

 $\ell(\theta_G, G; D) = \log p(D \mid \theta_G, G)$ $= M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)}) - M \sum_{i} \hat{H}(x_i)$ Entropy of x_i Mutual information

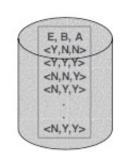
- between x_i and its parents
- As we match x_i and parents better, the mutual information increases.
- Problems?
- Adding edges always helps!

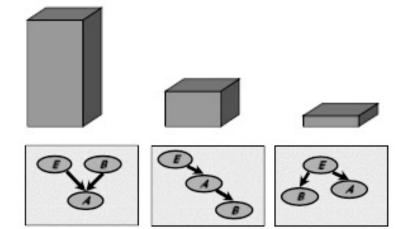
Different approaches to structure learning

- Two main problems:
 - Likelihood is maximized for fully-connected graph, so we don't want to just maximize likelihood alone.
 - Finding optimal BN structure is an **NP-hard** problem if allowed to be non-tree.
- Many heuristics but no "guarantees" of returning the perfect structure.
- Can get some guarantees if we make assumptions:
 - For tree BNs: Chow-Liu algorithm
 - For pairwise MRFs: Covariance selection, neighborhood-selection

Score-based Learning

• Define a scoring function that evaluates how well a structure matches the data:

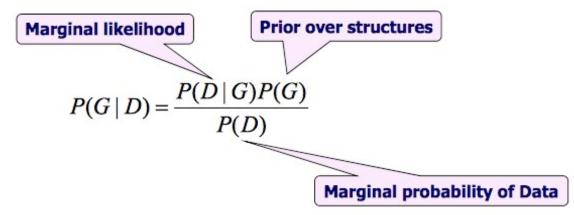




• Search for a structure that maximizes the score

Bayesian Score

- Let's take a Bayesian approach
 - Place a distribution over our "uncertain" elements (G and θ)



P(D) does not depend on the network

• Bayesian score for G

 $Score_{B}(G:D) = \log P(D | G) + \log P(G)$

Bayesian Score cont'd

• Bayesian score for G

 $Score_B(G:D) = \log P(D | G) + \log P(G)$

- Our choice of prior P(G) has implications.
- Example: Let the edges have Dirichlet priors. Then as the number of configurations $M \rightarrow \infty$,

$$\log P(D \mid G) = l(\hat{\theta}_G : D) - \frac{\log M}{2} Dim(G) + O(1)$$

Dim(G): number of independent parameters in G

Tradeoff between fit to vs. data and complexity

Ben Lengerich © University of Wisconsin-Madison 2025

Bayesian Information Criterion (BIC)

• Bayesian score gives Bayesian Information Criterion:

Score_{BIC}(G:D) =
$$l(\hat{\theta}_G:D) - \frac{\log M}{2}Dim(G)$$

Chow-Liu tree learning algorithm

- Assume true structure is a tree
- Start by calculating Mutual Information between every pair of variables X_i and X_j

$$\hat{I}(X_{i}, X_{j}) = \sum_{x_{i}, x_{j}} \hat{p}(x_{i}, x_{j}) \log \frac{\hat{p}(x_{i}, x_{j})}{\hat{p}(x_{i})\hat{p}(x_{j})}$$

- Compute maximum weight spanning tree (Kruskal)
- Guarantees to maximize objective function:

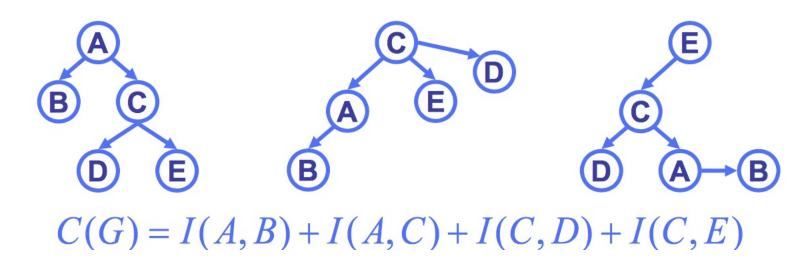
$$\ell(\theta_G, G; D) = \log \hat{p}(D \mid \theta_G, G)$$

= $M \sum_i \hat{I}(x_i, \mathbf{x}_{\pi_i(G)}) - M \sum_i \hat{H}(x_i)$ =

$$C(G) = M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)})$$

Chow-Liu tree learning algorithm: directionality

- How to pick direction of edges?
- Pick any node as root, do BFS to define directions



• Can't tell the difference between competing root nodes

Pairwise MRFs = Gaussian Graphical Model

• Pairwise MRF:

$$P(X) \propto \prod_{i} \psi_{i}(X_{i}) \prod_{i,j} \psi_{i,j}(X_{i}, X_{j})$$

- Gaussian Graphical Model:
 - Let $\psi_i(X_i) = \exp(\theta_i X_i), \psi_{i,j}(X_i, X_j) = \exp(\theta_{ij} X_i X_j)$
 - Then:

$$P(X \mid \theta) \propto \exp\left(\sum_{i} \theta_{i} X_{i} + \sum_{i,j} \theta_{ij} X_{i} X_{j}\right)$$

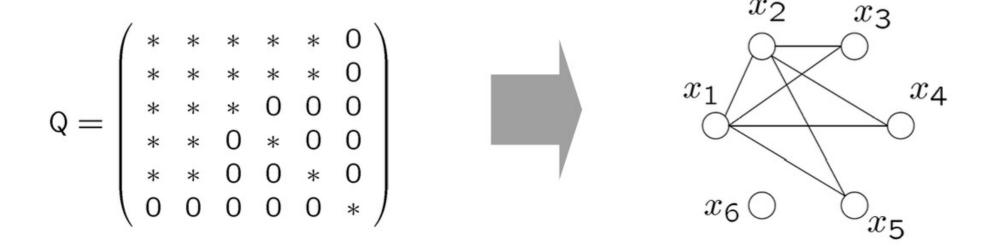
Gaussian Graphical Model

- Gaussian Graphical Model:
 - Let $\psi_i(X_i) = \exp(\theta_i X_i), \psi_{i,j}(X_i, X_j) = \exp(\theta_{ij} X_i X_j)$
 - Then:

$$P(X \mid \theta) \propto \exp\left(\sum_{i} \theta_{i} X_{i} + \sum_{i,j} \theta_{ij} X_{i} X_{j}\right)$$

• This is a Multivariate Gaussian density: $p(x|\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)]$ • for $\mu = 0$ and $\theta = \Sigma^{-1} = Q$.

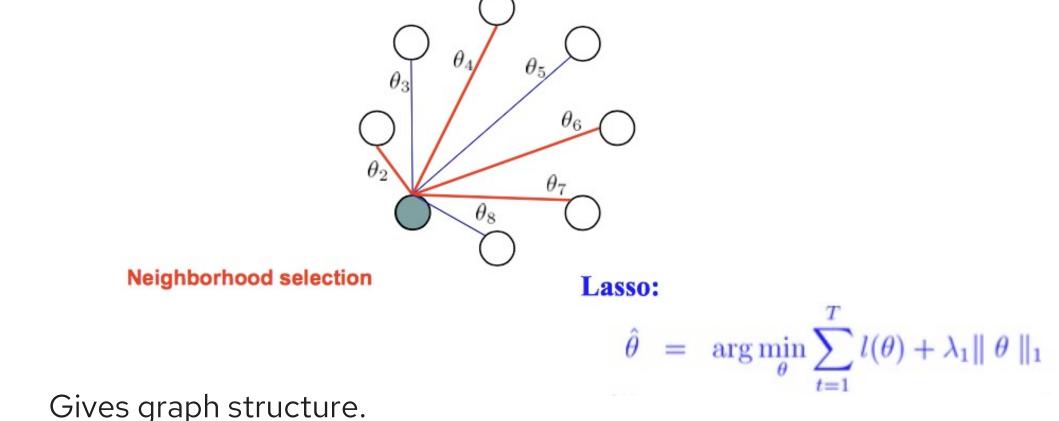
So estimating Precision Mat. gives MRF structure



If we can estimate a sample covariance, then we can estimate $Q = \hat{\Sigma}^{-1}$

What if the number of dimensions > number of data points?

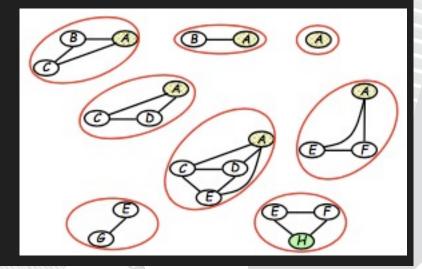
Graph Regression: Learn graph structure per node



Ben Lengerich © University of Wisconsin-Madison 2025

3. Inference

3a. Exact Inference



Complexity of inference

• Computing P(X = x | e) in a GM is **NP-hard**

What does this mean for us?

Inference cannot be solved in polynomial time unless P=NP.
 No general procedure that works efficiently for arbitrary GMs.
 For families of GMs, we can have provably efficient procedures.

Exponential worst-case performance for exact inference.
 Motivates approximate inference.

Variable Elimination: General form

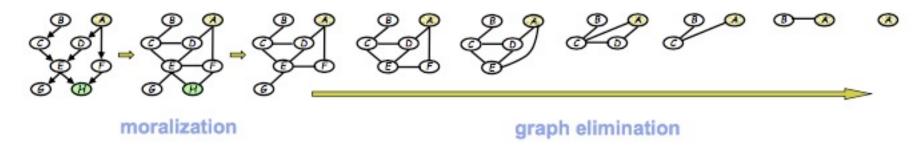
• Write query in the form

$$P(X_1, e) = \sum_{x_d} \cdots \sum_{x_3} \sum_{x_2} \prod_i P(x_i \mid pa_i)$$

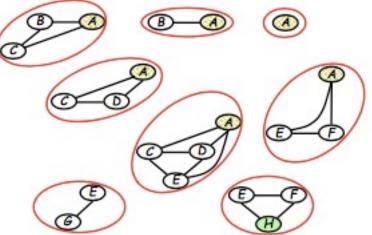
- Then iteratively:
 - Move all irrelevant terms outside of innermost sum.
 - Perform innermost sum, getting a new term.
 - Insert the new term into the product.

Understanding Variable Elimination

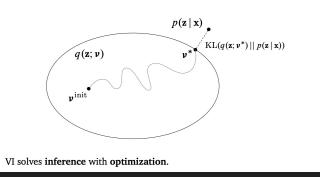
• A graph elimination algorithm



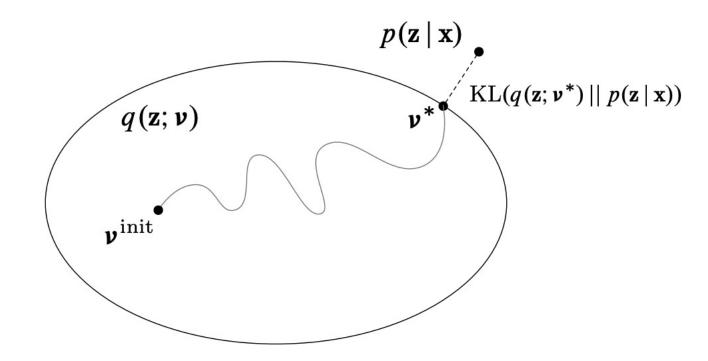
 Intermediate terms correspond to the cliques resulted from elimination



3b. Variational Inference

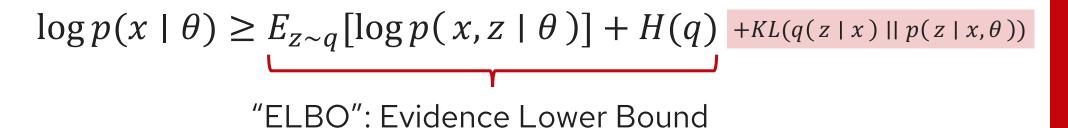


Variational Inference



VI solves inference with optimization.

Variational Inference



- We choose a family of variational distributions (i.e., a parameterization of a distribution of the latent variables) such that the expectations are computable.
- Then, we **maximize the ELBO** to find the parameters that gives as tight a bound as possible on the marginal probability of x.

Mean-field VI

• In mean field variational inference, we assume that the variational family factorizes

$$q(z_1,\ldots,z_m)=\prod_{j=1}^m q(z_j).$$

- Each variable is independent. (We are suppressing the parameters νj .)
- This is more general that it initially appears—the hidden variables can be grouped and the distribution of each group factorizes.
- Optimize by coordinate ascent:

$$q^*(z_k) \propto \exp\{\mathrm{E}_{-k}[\log p(z_k, Z_{-k}, x)]\}$$

3c. Monte Carlo Methods

Monte Carlo methods: define dist by samples

- Draw random samples from desired distribution
- Yield a stochastic representation of desired distribution

•
$$E_p[f(x)] = \frac{\sum_m f(X_m)}{|m|}$$

- Asymptotically exact
- Challenges:
 - How to draw samples from desired distribution?
 - How to know we've sampled enough?

Monte Carlo Methods

- Direct sampling
- Rejection sampling
- Likelihood weighting
- Markov chain Monte Carlo (MCMC)

Rejection Sampling

- Instead of sampling from P(X), sample x^* from Q(X) and accept sample with probability:
 - $P_{accept}(x^*) = \frac{P(x^*)}{MQ(x^*)'}$, where *M* is some constant such that $P(x) \le MQ(x) \forall x$
- Works with un-normalized P(X), too.

Unnormalized Importance Sampling

- Instead of hard **rejecting** samples, we can just **reweight** them: $E_P[f(X)] = \int_x P(x)f(x)dx = \int_x \frac{P(x)}{Q(x)}Q(x)f(x)dx = E_Q\left[\frac{P(x)}{Q(x)}f(x)\right]$
- Approximate with empirical:

$$E_P[f(X)] \approx \frac{1}{n} \sum_{i=1,\dots,n} f(x_i) w(x_i)$$

where
$$x_i \sim Q$$
 and $w_i = \frac{P(x_i)}{Q(x_i)}$

What characteristic do we need for this to work?

Normalized Importance Sampling

• Instead of needing access to the normalized probability distribution P, we can also perform importance sampling with an un-normalized $\tilde{P} = aP$ by normalizing the weights according to the sample:

•
$$\widetilde{w_i} = \frac{w_i}{\sum_i w_i}$$

Weighted resampling

- Problem of importance sampling:
 - Performance depends on how well Q matches P.
 - If P(x)f(x) is strongly varying and has a significant proportion of its mass concentrated in a small region, ratio will be dominated by a few samples.
- Solution: use a heavy-tailed Q and weighted resampling.

Limitations of "simple" Monte Carlo

- Hard to get rare events in high-dimensional spaces
- We need a good proposal Q(x) that is not very different than P(x)
- What if we had an adaptive proposal Q(x)?

Markov Chain Monte Carlo

MCMC algorithms feature adaptive proposals

- Instead of Q(x') use Q(x'|x) where x' is the new state being sampled and x is the previous sample
- As x changes Q(x' | x) can also change

Importance sampling with MCMC with adaptive a (bad) proposal Q(x) P(x)Q(x) $Q(x^2|x^1)$ $x^3 x^1 x^2$

P(x)Q(x3|x2) Q(x4|x3) x² x³

proposal Q(x'|x)

MCMC: Metropolis-Hastings

- 1. Initialize starting state $x^{(0)}$, set t = 0
- 2. Burn-in: while samples have "not converged"
 - **X=X**^(t)
 - t =t +1,
 - sample x* ~ Q(x*|x) // draw from proposal
 - sample u ~ Uniform(0,1) // draw acceptance threshold

- if
$$u < A(x^* | x) = \min\left(1, \frac{P(x^*)Q(x | x^*)}{P(x)O(x^* | x)}\right)$$

- **x**^(t) = **x*** // transition
 - else
- x^(t) = x
 // stay in current state
- Take samples from P(x) =
 - x(t+1) ← Draw sample (x(t))

Function Draw sample (x(t))

: Reset t=0, for t =1:N

Summary

- We can represent complex distributions by composing local structures.
- Structures have complex implications for knowledge, learning, and inference.
- Given a structure, we can learn optimal parameters to match data even if some of the nodes do not have observed data.
- We can estimate GM structure by optimizing a tradeoff between likelihood and a structural cost.
- Given a fitted GM (i.e. a distribution), we can query it for exact statistical answers or approximate the the distribution for faster answers.

Questions?

