Probabilistic Graphical Models & Probabilistic Al

Ben Lengerich

Lecture 15: Deep Learning from a GM Perspective April 1, 2025

Reading: See course homepage

Entering Module 3: Modern Probabilistic Al

- Outstanding graded material:
 - Exam (20%, grades TBD)
 - Project midterm report (5%, 4/11)
 - Project presentation (5%, 4/31, 5/1)
 - Sign up here!
 - Project final report (15%, 5/5)
 - Extra credit (3%, <u>sign-up</u>)
- Module 3:
 - Papers > Textbooks

Weeks Lecture Dates		Торіс	Assignments			
Module 1: Foundations of PGMs, Exact Inference						
1-4	Jan 21- Feb 13	Course Introduction, Foundations of PGMs, Exact Inference	HWs 1, 2			
4	Feb 13	Quiz				
Module 2: Learning						
5-9 Feb 18 - Mar 18		Parameter Learning, Structure Learning, Approximate Inference	HWs 3,4,5			
9	9 Mar 20 Midterm Exam 10 Mar 21 - Mar 30 Spring Recess					
10						
Module 3: Modern Probabilistic Al						
11-14Apr 1 - Apr 24 perspectDeep Lead perspect15Apr 29 - May 1Project F		Deep Learning, LLMs from a GM perspective	Project Midway Report Project Final Report			
		Project Presentations				

A note on research papers

How we imagine research papers:

How research papers **actually** are:

Holes big enough to drive a car through!

A note on research papers \rightarrow let's be optimists.

Deep Learning from a GM Perspective

History - Motivation

Deep learning:

- Has won numerous pattern recognition competitions
- Does so with minimal feature engineering

This wasn't always the case!

Since 1980s: Form of models hasn't changed much, but lots of new tricks...

- More hidden units
- Better (online) optimization
- New nonlinear functions (ReLUs)
- Faster computers (CPUs and GPUs)

A brief history of Al

[Toosi et al 2021]

A brief history of Al

						The first Al Games	
		First				• Christopher Strachey • Arthur Samuel	
Mark I Perceptron The first Neural Net Computer	First high-level AI programming Lang. (LISP)	Mathematical Prover program.	The first Industrial Robot	Perceptron Convergence Theorem	The invention of "MicroWorld"	"ELIZA" The first chatbot	Ine first general-purp mobile rob
0 - Frank Rosenblatt	0 - John McCarthy	• Nathaniel Rochester • Herbert Gelernter	"Unimate"	• Bernie Widrow - Frank Rosenblatt	0 - Marvin Minsky	😑 - Joseph Weizenbaum	"Shakey"

[Toosi et al 2021]

A brief history of Al

[Toosi et al 2021]

From biological neuron to artificial neuron

McCulloch & Pitts neuron – Threshold only

Warren McCulloch

Walter Pitts

From biological neuron to artificial neuron

- McCulloch & Pitts neuron –
 Threshold only
- Can represent "AND", "OR"
- But not "NOT", "XOR"

Perceptrons generalize MP neurons

Perceptrons generalize MP neurons

- Consider regression problem f: $X \rightarrow Y$ for scalar Y
 - Let $Y \sim N(f(x), \Sigma^2)$
 - Then $\operatorname{argmax}_{w} \log \prod_{i} P(y_i \mid x_i; w) = \operatorname{argmin}_{w} \sum_{i} \frac{1}{2} (y_i f(x_i; w))^2$

Perceptron learning algorithm

• Recall the nice property of sigmoid: $\frac{d\sigma}{dt} = \sigma(1 - \sigma)$

 $\begin{aligned} \frac{\partial E_D[\vec{w}])}{\partial w_j} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_d (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right) \\ &= -\sum_d (t_d - o_d) \frac{\partial o_d}{\partial net_i} \frac{\partial net_d}{\partial w_i} \\ &= -\sum_d (t_d - o_d) o_d (1 - o_d) x_d^i \end{aligned}$

- x_d = input
- t_d = target output
- o_d = observed output
- w_i = weight i

Batch mode: Do until converge: 1. compute gradient $\nabla E_D[w]$ 2. $\vec{w} = \vec{w} - \eta \nabla E_D[\vec{w}]$ Incremental mode: Do until converge:

For each training example *d* in *D* 1. compute gradient ∇E_d[w]
 2.w = w − η∇E_d[w]

where $\nabla E_d[\vec{w}] = -(t_d - o_d)o_d(1 - o_d)\vec{x}_d$

Can a Perceptron represent XOR?

- If there were, then there would be constants w_1 and w_2 such that:
 - When $x_1 = x_2$, then $\sigma(w_1 x_1 + w_2 x_2) < \theta$
 - When $x_1 \neq x_2$, then $\sigma(w_1x_1 + w_2x_2) \geq \theta$
 - Let $x_1 = 1, x_2 = 0$

• Let
$$x_1 = 1, x_2 = 1$$
:

- Eq. (1): $\sigma(w_1) \ge \theta$
- Eq. (3): $\sigma(w_1 + w_2) < \theta$ • Let $x_1 = 0, x_2 = 1$
 - Eq. (2): $\sigma(w_2) \ge \theta$
- Eq. (1) + Eq. (2) contradicts Eq. (3)

An XOR Logic Gate

Neural Network Model (MLP)

"Combined Logistic Models"...

"Combined Logistic Models"...

"Combined Logistic Models"...

...But no target for hidden units

Backpropagation

• Neural networks are function compositions that can be represented as computation graphs:

• By applying the chain rule, and working in reverse order, we get:

$$\frac{\partial f_n}{\partial x} = \sum_{i_1 \in \pi(n)} \frac{\partial f_n}{\partial f_{i_1}} \frac{\partial f_{i_1}}{\partial x} = \sum_{i_1 \in \pi(n)} \frac{\partial f_n}{\partial f_{i_1}} \sum_{i_2 \in \pi(i_1)} \frac{\partial f_{i_1}}{\partial f_{i_2}} \frac{\partial f_{i_1}}{\partial x} = \dots$$

- Activation functions
 - Linear and ReLU

- Activation functions
 - Linear and ReLU
 - Sigmoid and tanh

1

0

-1

• Etc.

- Activation functions
 - Linear and ReLU
 - Sigmoid and tanh
 - Etc.
- Layers
 - Fully connected
 - Convolutional & pooling
 - Recurrent
 - ResNets
 - Etc.

- Activation functions
 - Linear and ReLU
 - Sigmoid and tanh
 - Etc.
- Layers
 - Fully connected
 - Convolutional & pooling
 - Recurrent
 - ResNets
 - Etc.
- Loss functions
 - Cross-entropy loss
 - Mean squared error
 - Etc.

- Arbitrary combinations of the basic building blocks
- Multiple loss functions multi-target prediction, transfer learning, and more
- Given enough data, deeper architectures just keep improving
- Representation learning: the networks learn increasingly more abstract representations of the data that are "disentangled," i.e., amenable to linear separation.

Using DNNs for hierarchical representations

- In Language: hierarchy in syntax and semantics
 - Words \rightarrow Parts of Speech \rightarrow Sentences \rightarrow Text
 - Objects, Actions, Attributes... \rightarrow Phrases \rightarrow Statements \rightarrow Stories
- In Vision: part-whole hierarchy
 - Pixels \rightarrow Edges \rightarrow Textons \rightarrow Parts \rightarrow Objects \rightarrow Scenes

	DL			
Empirical goal:	e.g., classification, feature learning	e.g., latent variable inference, transfer learning		
Structure:	Graphical	Graphical		
Objective:	Something aggregated from local functions	Something aggregated from local functions		
Vocabulary:	Neuron, activation function,	Variable, potential function,		
Algorithm:	A single, unchallenged, inference algorithm – Backpropagation (BP)	A major focus of open research, many algorithms, and more to come		
Evaluation:	On a black-box score – end performance	On almost every intermediate quantity		
Implementation:	Many tricks	More or less standardized		
Experiments:	Massive, real data (GT unknown)	Modest, often simulated data (GT known)		

Graphical models

• <u>Representation</u> for encoding meaningful knowledge and the associated uncertainty in a graphical form

Deep neural networks

 Learn representations that facilitate computation and performance on the end-metric (intermediate representations may not be meaningful)

Graphical models

- <u>Representation</u> for encoding meaningful knowledge and the associated uncertainty in a graphical form
- Learning and inference are based on a rich toolbox of well-studied (structure-dependent) techniques (e.g., EM, message passing, VI, MCMC, etc.)
- Graphs <u>represent models</u>

Deep neural networks

- Learn representations that facilitate computation and performance on the end-metric (intermediate representations may not be meaningful)
- Learning is predominantly based on the gradient descent method (aka backpropagation);
 <u>Inference</u> is often trivial and done via a "forward pass"
- Graphs represent computation

Graphical models

Utility of the graph

- A vehicle for synthesizing a global loss function from local structure
 - potential function, feature function, etc.
- A vehicle for designing sound and efficient inference algorithms
 - Sum-product, mean-field, etc.
- A vehicle to inspire approximation and penalization
 - Structured MF, Tree-approximation, etc.
- A vehicle for monitoring theoretical and empirical behavior and accuracy of inference

Utility of the loss function

• A major measure of quality of the learning algorithm and the model

 $\Omega(F_0) := \left\{ \theta \in \Omega \mid \theta_{(s,t)} = 0 \; \forall \; (s,t) \in E \right\}. \quad \Omega(T) := \left\{ \theta \in \Omega \mid \theta_{(s,t)} = 0 \; \; \forall \; (s,t) \notin E(T) \right\}$

Graphical models

Utility of the graph

- A vehicle for synthesizing a global loss function from local structure
 - potential function, feature function, etc.
- A vehicle for designing sound and efficient inference algorithms
 - Sum-product, mean-field, etc.
- A vehicle to inspire approximation and penalization
 - Structured MF, Tree-approximation, etc.
- A vehicle for monitoring theoretical and empirical behavior and accuracy of inference

Utility of the loss function

• A major measure of quality of the learning algorithm and the model

Deep neural networks

Utility of the network

- A vehicle to conceptually synthesize complex decision hypothesis
 - stage-wise projection and aggregation
- A vehicle for organizing computational operations
 - stage-wise update of latent states
- A vehicle for designing processing steps/computing modules
 - Layer-wise parallelization
- No obvious utility in evaluating DL inference algorithms

Utility of the Loss Function

• Global loss? Well it is complex and non-convex...

Sometimes nets are proposed as true GMs:

- Boltzmann machines (Hinton & Sejnowsky, 1983)
- Restricted Boltzmann machines (Smolensky, 1986)
- Learning and Inference in sigmoid belief networks (Neal, 1992)
- Fast learning in deep belief networks (Hinton, Osindero, Teh, 2006)
- Deep Boltzmann machines (Salakhutdinov and Hinton, 2009)

Ŵ

Restricted Boltzmann Machines

- Assume visible units are one layer, and hidden units are another.
- Throw out all the connections within each layer.

Restricted Boltzmann Machines

$$\frac{\partial}{\partial w} \log L \propto \frac{1}{N} \sum_{\mathbf{v} \in \mathcal{D}} \sum_{\mathbf{h}} P(\mathbf{h} \mid \mathbf{v}) \frac{\partial}{\partial w} \log P^{\star}(\mathbf{x}) - \sum_{\mathbf{v}, \mathbf{h}} P(\mathbf{v}, \mathbf{h}) \frac{\partial}{\partial w} \log P^{\star}(\mathbf{x})$$

$$\underbrace{\frac{\partial}{\partial w} \log P^{\star}(\mathbf{x})}_{\text{av. over posterior}} = \underbrace{\frac{\partial}{\partial w} \log P^{\star}(\mathbf{x})}_{\text{av. over joint}} = \underbrace{\frac{\partial}{\partial w} \log P^{\star}(\mathbf{x})}_{\text{av. over joint}}$$

Both terms involve averaging over $\frac{\partial}{\partial w} \log P^{\star}(\mathbf{x})$.

Contrastive Divergence estimates the second term with a Monte Carlo estimate from 1-step of a Gibbs sampler!

Sigmoid Belief Networks

Sigmoid belief nets are simply Bayes networks conditionals represented in a particular form:

$$P(S_i = x \mid S_j = s_j : j \neq i)$$

$$\propto P(S_i = x \mid S_j = s_j : j < i)$$

$$\cdot \prod_{j > i} P(S_j = s_j \mid S_i = x, S_k = s_k : k < j, k \neq i)$$

$$P(S_i = s_i \mid S_j = s_j : j < i) = \sigma\left(s_i^* \sum_{j < i} s_j w_{ij}\right)$$

RBMs are infinite belief networks (with tied weights)

Since none of the units within a layer are interconnected, we can do Gibbs sampling by updating the whole layer at a time.

(with time running from left \rightarrow right)

RBMs are infinite belief networks (with tied weights)

to generate:

sampling from this is the same as sampling from the network on the right.

Deep Belief networks: layer-wise pre-training

Un-tie the weights from layers 2 to infinity

If we freeze the first RBM, and then train another RBM atop it, we are untying the weights of layers 2+ in the ∞ net (which remain tied together).

and so on ...

NNs and GMs: Natural Complements

[•] **Objective:** log-likelihood

- Model: HMM/Gaussian emissions
- Inference: forwardbackward algorithm
- Learning: SGD with gradient by backpropagation

[[]Graves et al. 2013]

NNs and GMs: Natural Complements

- In a standard CRF, each of the factor cells is a parameter (e.g. transition or emission)
- In the hybrid model, these values are computed by a neural network with its own parameters

[Collobert & Weston 2011]

_ooking ahead				4/15	Lecture #20 (Prof. Lengerich): LLMs from a Probabilistic Perspective 1: Implementing a GPT from Scratch [slides notes]	 Radford et al., Improving Language Understanding by Generative Pre-Training (the GPT-1 paper) Radford et al., Language Models are Unsupervised Multitask Learners (the GPT-2 paper)
		Module 3: Modern Probabilistic Al				 Brown et al., Language Models are Few-Shot Learners (the GPT-3 paper)
	4/1	Lecture #16 (Prof. Lengerich): Deep Learning from a GM Perspective [slides I notes]	 Goodfellow et al., Deep learning book, Ch. 6.2-5, 20.3-4 Salakhutdinov and Hinton, Deep Boltzmann Machines Ranganath et al., Deep exponential families 			 Raschka, Build an LLM from Scratch 4 (video) Karpathy, Let's Build GPT from Scratch (video)
	4/3	Lecture #17 (Prof. Lengerich): CNNs, RNNs, Autoencoders [slides I notes]	Pascanu, Mikolov, Bengio, On the difficulty of training recurrent neural networks	4/17	Lecture #21 (Prof. Lengerich): LLMs from a Probabilistic Perspective 2: Training on Unlabeled Data	 Bi. et al, DeepSeek LLM Scaling Open- Source Language Models with Longtermism Liu et al., DeepSeekV2 A Strong, Economical, and Efficient Mixture-of-Experts Language Model Liu et al., DeepSeekV3 Technical Report
4/8	4/8	Lecture #18 : Deep Generative Models: GAN,	 Goodfellow et al., Deep learning book, Ch. 20.9-10 Kingma and Welling, Variational Autoencoders Goodfellow et al., Generative Adversarial Nets Arora., Generative Adversarial Networks (GANs), Some Open Questions 		[slides notes]	
		[slides I notes]		4/22	Lecture #22 (Prof. Lengerich): LLMs from a Probabilistic Perspective 3: Fine-tuning on Labeled Data [slides notes]	 Raffel et al., Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer Ouyang et al., Training language models to follow instructions with human feedback Li & Liang, Prefix-tuning - Optimizing
	4/10	Lecture #19 (Prof. Lengerich): Attention and Transformers [slides I notes]	f. Lengerich): • Vasvani et al., Attention is all you need • Devlin et al., BERT - Pre-training of Deep Bidrectional Transformers for Language Understanding. • Raschka, Build an LLM from Scratch 3 (video) • Sanderson, Visualizing transformers and			continuous prompts for generation
				4/24	Lecture #23 (Prof. Lengerich): Context-Adaptive Graphical Models [slides notes]	Lengerich et al., Contextualized Machine Learning
				4/29		Project Presentations
			attention (video)	5/1		Project Presentations

Ben Lengerich © University of Wisconsin-Madison 2025

Questions?

