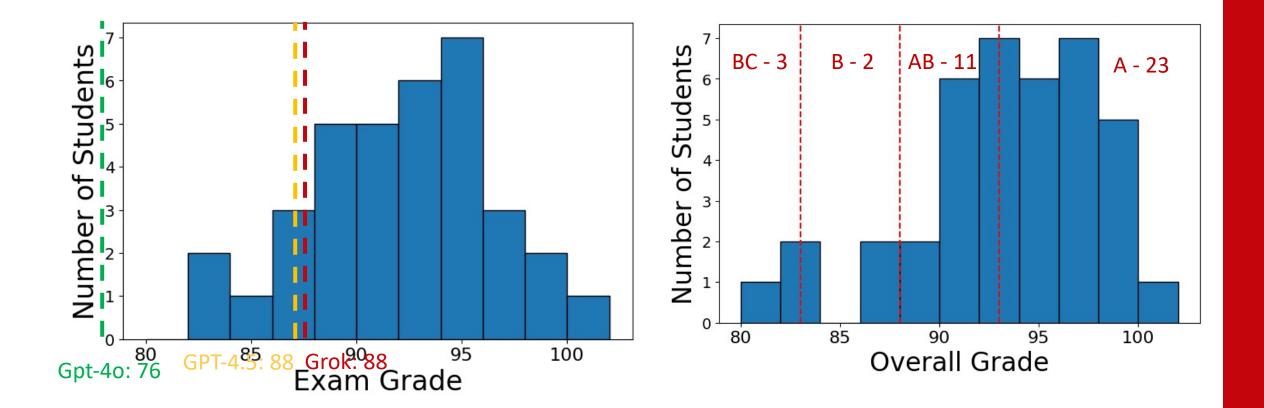
Probabilistic Graphical Models & Probabilistic Al

Ben Lengerich

Lecture 17: CNNs, RNNs, Autoencoders April 3, 2025

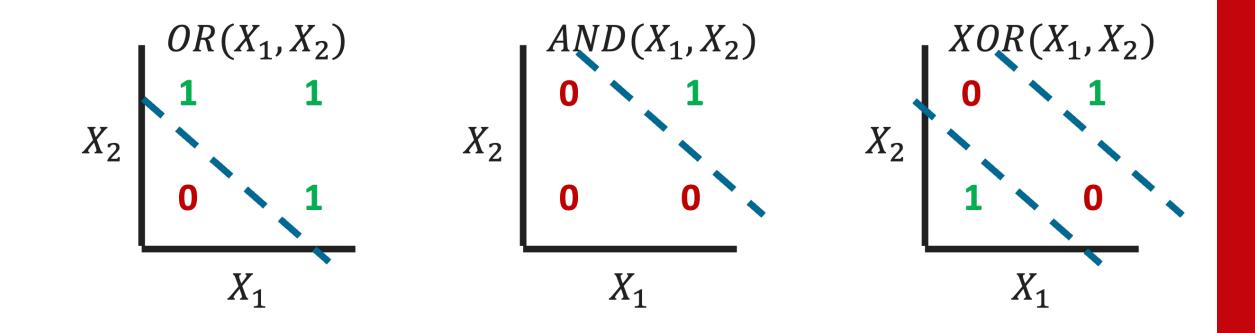
Reading: See course homepage



Outstanding graded material

- Project midterm report (5%, 4/11)
- Project presentation (5%, 4/29, 5/1)
 - Sign up here!
- Project final report (15%, 5/5)
- Extra credit (3%, <u>sign-up</u>)

Recap: Perceptron Decision Boundaries

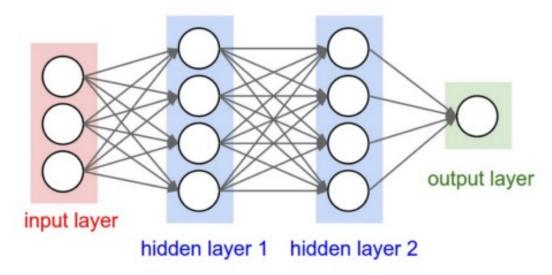


Today

- CNNs
- RNNs
- Autoencoders

Convolutional Neural Networks (CNNs)

Full connectivity is a problem for large inputs

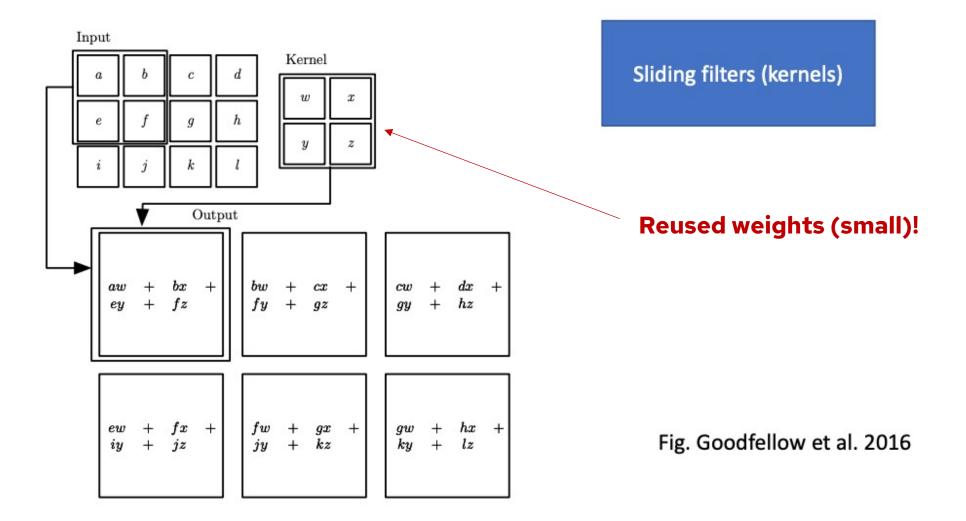


• 200x200x3 images imply **120,000** weights per neuron in first hidden layer

Convolutional Neural Networks [LeCun 1989]

- If inputs are images (and more generally, data with a grid-like topology) then we can share parameters.
- Instead of learning position-specific weights, learn weights defined for relative positions
 - Learn "filters" that are reused across the image
 - Generalize across spatial translation of input
- Key idea:
 - Replace matrix multiplication in neural networks with a convolution

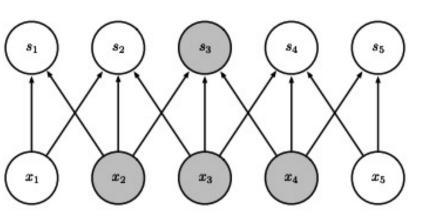
Convolutional Neural Networks [LeCun 1989]



Ben Lengerich © University of Wisconsin-Madison 2025

CNNs give sparse connectivity

Sparse connections due to small convolution kernel



Dense connections



(Goodfellow 2016)

Receptive fields grow over depth

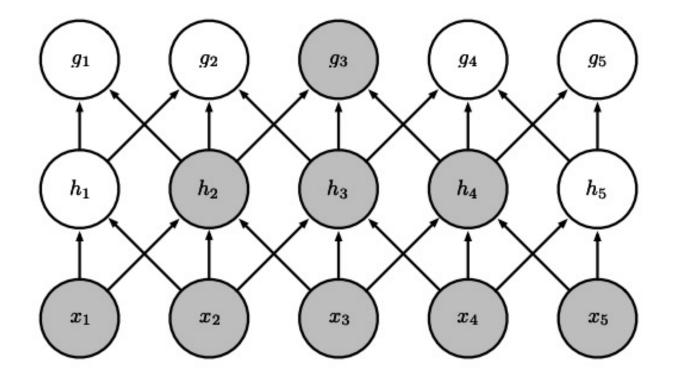
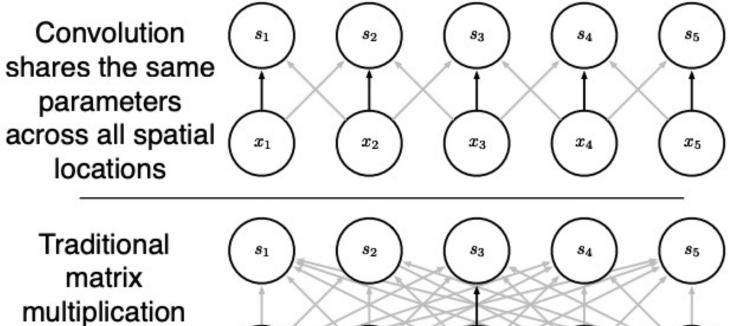


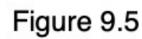
Figure 9.4

(Goodfellow 2016)

Parameter sharing



multiplication does not share any parameters



 x_2

 x_3

 x_1

(Goodfellow 2016)

 x_5

 x_4

A Probabilistic Perspective on CNNs

Ben Lengerich © University of Wisconsin-Madison 2025

Convolution: Adding two random variables

- Let $X \sim P_X, Y \sim P_Y$ be independent RVs. What's E[X] + E[Y]?
- What's P(X + Y = z)? $P(X + Y = z) = \int P(X = x, Y = z - x) dx$ $= \int P_X(X = x) P_Y(Y = z - x) dx$ $= \int P_X(x) P_Y(z - x) dx$
- This is known as a **convolution** of P_X and P_Y : $(P_X * P_Y)(z) = \int P_X(x)P_Y(z-x)dx$

"Convolutions" in CNNs

- Let:
 - $P_I(i, j)$ be the probability that a pattern is centered at i, j in the image.
 - $P_{K}(m,n)$ be the probability that a pattern offset by (m,n) should be recognized.
 - $P_{Z}(i, j)$ be the probability of recognizing a pattern at i, j considering all relevant offsets.
- We can write:

$$P_{Z}(i,j) = \sum_{m} \sum_{n} P_{I}(I = (i+m,j+n))P_{L}(L = (m,n))$$

- Alternatively, define:
 - $X = \log P_I$, $Y = \log P_K$
- Then $Z(i,j) = \log \sum_{m} \sum_{n} \exp(X(i+m,j+n) + Y(m,n))$ $\sum X(i+m,j+n)Y(m,n) = X * Y$ \approx

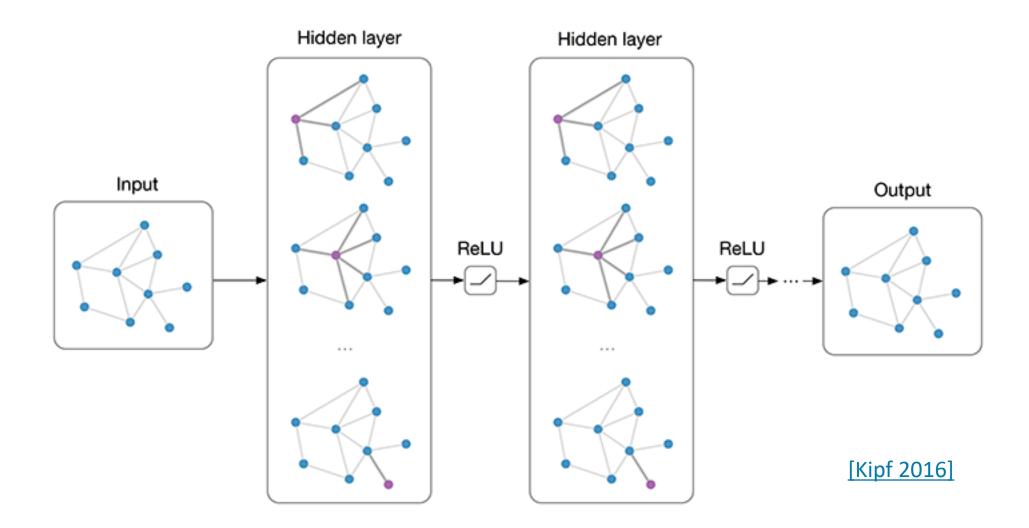
Ben Lengerich © University of Wisconsin-Madison 2025

m

Convolutions on non-image data?

Ben Lengerich © University of Wisconsin-Madison 2025

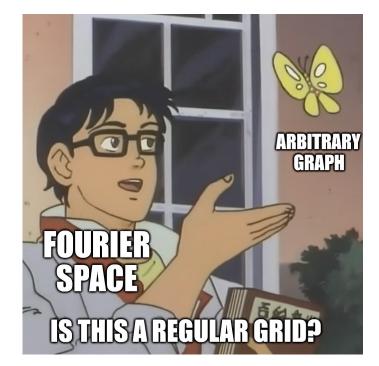
Graph Convolutional Networks



Ŵ

Spectral convolutions

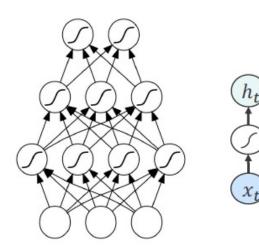
- Spatial domain graphs may be irregular
- Spectral domain represent graph by the eigenvectors of the graph Laplacian
 - Orthogonal basis
 - Convolution filter in the spectral domain is equivalent to a localized operation in the spatial domain
 - By designing filters to operate on certain eigenvalues, you can control which features (smooth vs high-frequency) you are retaining.



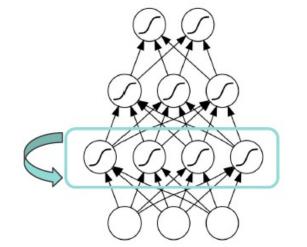
Recurrent Neural Networks (RNNs)

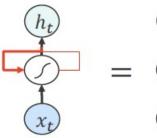
CNNs → **Recurrent Neural Networks (RNNs)**

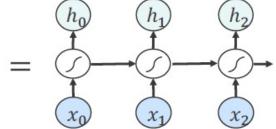
- Spatial Modeling vs. Sequential Modeling
- Fixed vs. variable number of computation steps.



The output depends ONLY on the current input

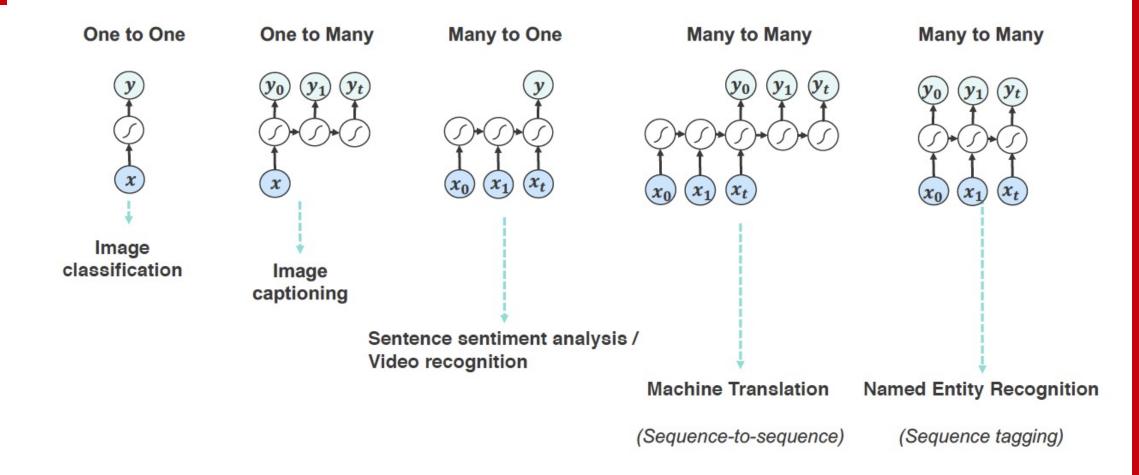






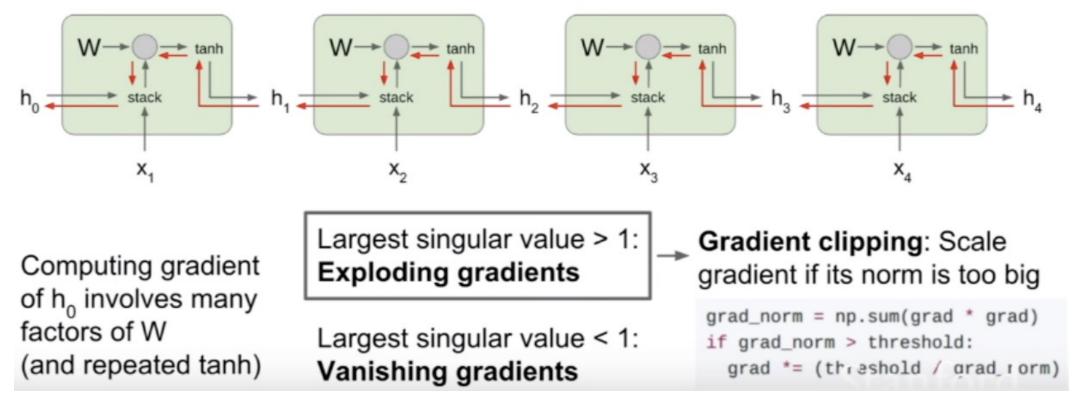
The hidden layers and the output additionally depend on previous states of the hidden layers

RNNs in many forms



A challenge: Vanishing / exploding gradients

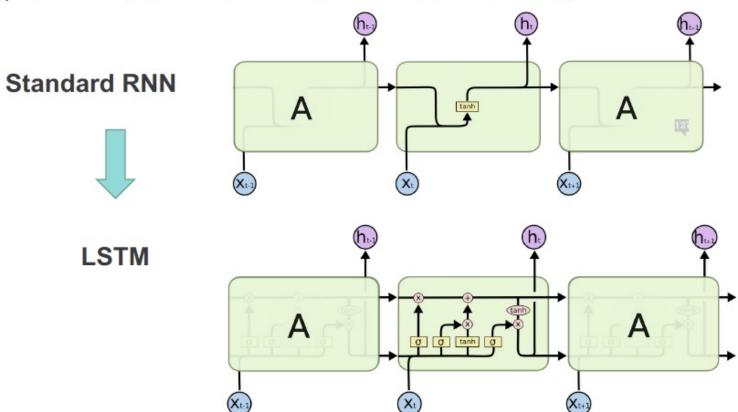
$\boldsymbol{h}_t = tanh(W^{hh}\boldsymbol{h}_{t-1} + W^{hx}\boldsymbol{x}_t)$



Bengio et al., 1994 "Learning long-term dependencies with gradient descent is difficult" Pascanu et al., 2013 "On the difficulty of training recurrent neural neworks"

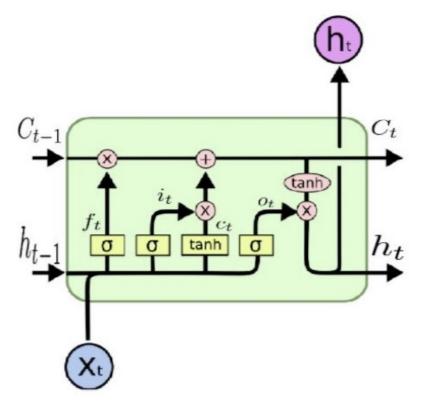
Long Short Term Memory (LSTM)

 LSTMs are designed to explicitly alleviate the long-term dependency problem [Horchreiter & Schmidhuber (1997)]



Long Short Term Memory (LSTM)

 Linear memory cells + multiplicative gate units to store read, write, and reset information



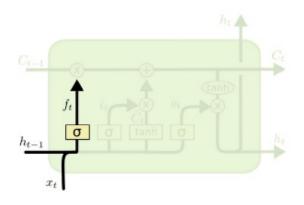
Gating functions to select information for passing and remembering

- Forget gate: whether to erase cell (reset)
- Input gate: whether to write to cell (write)
- Output gate: how much to reveal cell (read)

Ŵ

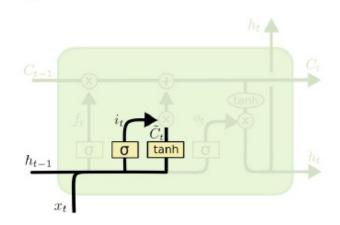
Long Short Term Memory (LSTM)

• Forget gate: decides what must be removed from h_{t-1}



$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

• Input gate: decides what new information to store in the cell

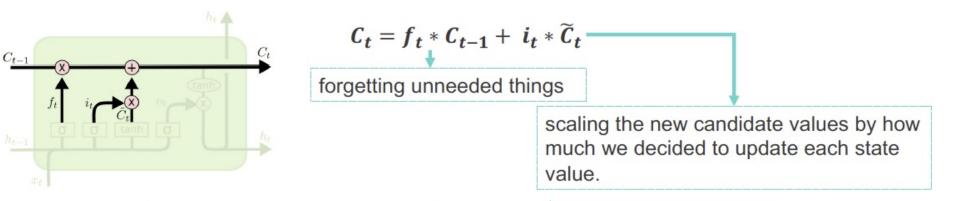


$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$
$$\widetilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

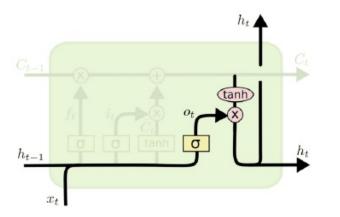
Ben Lengerich © University of Wisconsin-Madison 2025

Long Short Term Memory (LSTM)

• Update cell state:



• Output gate: decides what to output from our cell state



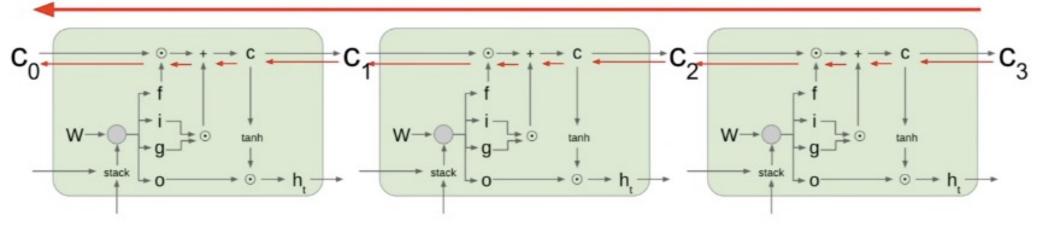
$$-o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

sigmoid decides what parts of the cell state we're going to output

Ben Lengerich © University of Wisconsin-Madison 2025

Backprop in LSTM

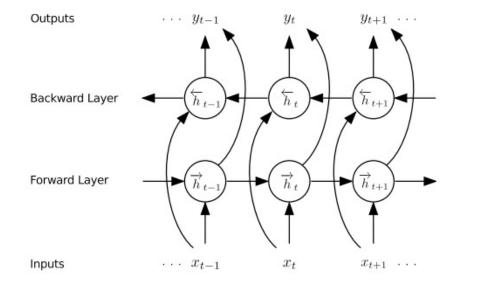
Uninterrupted gradient flow!



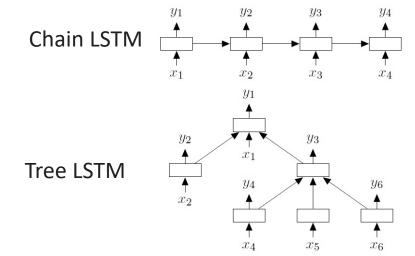
- No multiplication with matrix W during backprop
- Multiplied by different values of forget gate -> less prone to vanishing/exploding gradient

RNNs in Various Forms

- Bi-directional RNN
 - Hidden state is the concatenation of both forward and backward hidden states.
 - Allows the hidden state to capture both past and future information.
- Tree-structured RNN
 - Hidden states condition on both an input vector and the hidden states of arbitrarily many child units.
 - Standard LSTM = a special case of tree-LSTM where each internal node has exactly one child.



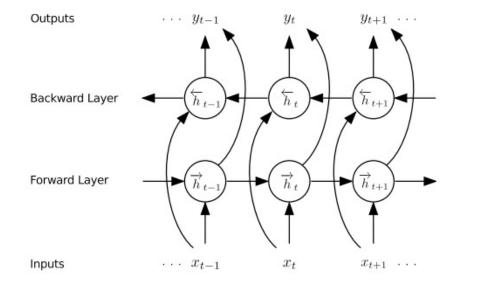
[Speech Recognition with Deep Recurrent Neural Networks, Alex Graves]



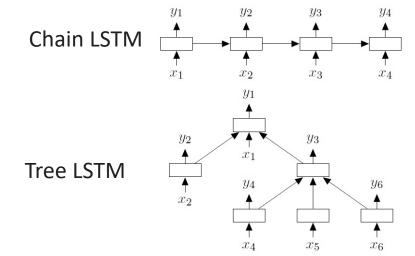
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, Tai. et al.

RNNs in Various Forms

- Bi-directional RNN
 - Hidden state is the concatenation of both forward and backward hidden states.
 - Allows the hidden state to capture both past and future information.
- Tree-structured RNN
 - Hidden states condition on both an input vector and the hidden states of arbitrarily many child units.
 - Standard LSTM = a special case of tree-LSTM where each internal node has exactly one child.



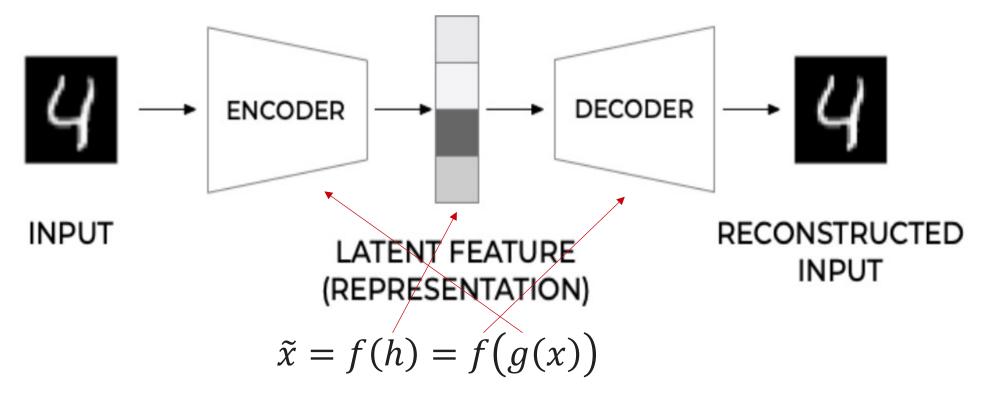
[Speech Recognition with Deep Recurrent Neural Networks, Alex Graves]



Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, Tai. et al.

Autoencoders

Autoencoders

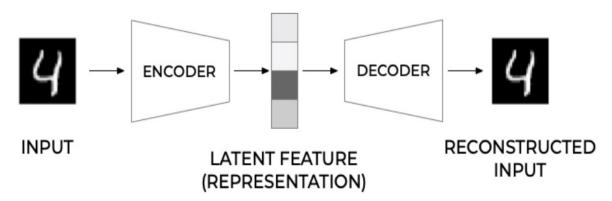


[Michelucci 2022]

Why reduce dimensionality?

- Reduce computation cost of downstream tasks.
- Improve statistical stability of downstream tasks.
- Denoise observation.
- Learn to generate samples (variational autoencoders).

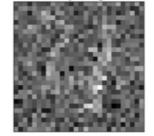
Autoencoders vs PCA for dimensionality reduction

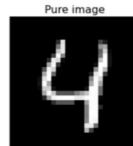


- PCA: Dimensionality reduction by linear projection onto eigenvectors of covariance
 - Requires O(d^2) space for data in d dimensions (expensive!)
- Autoencoder:
 - O(d) space.
 - Train with batches.
- Equivalent! If:
 - Autoencoder is linear + loss function is MSE and inputs are normalized.

Denoising Autoencoders

• What if we train our autoencoder on data with intentionallyadded noise? Pure image Noisy image Denoised image





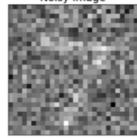
Pure image

Denoised image

Denoised image

[Michelucci 2022]

Noisy image



Questions?

