Probabilistic Graphical Models & Probabilistic Al

Ben Lengerich

Lecture 23: Open Directions in Graphical Models April 24, 2025

Reading: See course homepage

Today

- Semester Review
- Open Directions in Graphical Models
 - Context-Adaptive Models
 - Connecting LLMs to Graphical Models

Graphical Models

Why GMs?

What's the point of GMs in the AI era?

- A language for communication
- A language for computation
- A language for development

Finite human

The Fundamental Questions

Representation

- How to encode our domain knowledge/assumptions/constraints?
- How to capture/model uncertainties in possible worlds?

Inference

• How do I answer questions/queries according to my model and/or based on observed data?

e.g. $P(X_i|D)$

• Learning

• What model is "right" for my data?

e.g. $M = argmax_{M \in \mathcal{H}}F(D; M)$

PGMs allow us to understand and structure data

- GM = Multivariate Objective Function + Structure
- PGM = Multivariate Statistics + Structure

• Formally: A PGM is a **family of distributions** on a set of random variables that are compatible with all the probabilistic independence propositions encoded by a **graph** that connects these variables.

Conditional Independence

- Variables X and Y are **independent** if: P(X,Y) = P(X)P(Y)
 - Notation: $X \perp Y$
- Variables X and Y are conditionally independent given Z if: P(X, Y|Z) = P(X|Z)P(Y|Z)
 - Equivalently: P(X|Y,Z) = P(X,Z)
 - Notation: $X \perp Y \mid Z$

Structure Encodes Assumptions

- Generative:
 - Models the joint distribution P(X, Y).

- Discriminative:
 - Models the conditional distribution P(Y|X).

Bayesian Networks (BN)

- A BN is a **directed acyclic graph** whose nodes represent the random variables and whose edges represent direct influence of one variable on another
- Provides the skeleton for representing a joint distribution compactly in a **factorized** way
- Compact representation of a set of conditional independence assumptions
- We can view the graph as encoding a **generative sampling process** executed by nature.

Markov Random Fields (MRFs)

An undirected graphical model represents a distribution P(X) defined by an undirected graph H and a set of positive potential functions ψ associated with the cliques of H such that:

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{c} \psi_c(X_C)$$

where Z represents the **partition function**: $Z = \sum_{X} \prod_{c} \psi_{c}(X_{c})$.

• The potential function can be understood as a "score" of the joint configuration

Learning

Maximum Likelihood Estimation (MLE)

- Definition:
 - Find $\hat{\theta}$ that maximizes the likelihood of observing the given data. $\hat{\theta} = \operatorname{argmax}_{\theta} L(\theta)$ where $L(\theta) = P(\operatorname{data}|\theta)$.

Interpretation:

- $L(\theta)$: Probability of the observed data given θ .
- MLE chooses the parameter that makes the data most "likely."

Maximum A Posteriori (MAP) Estimation

• Find

 $\hat{\theta}_{MAP} = argmax_{\theta} P(\theta | data) \propto argmax_{\theta} P(data | \theta) P(\theta)$

- $P(\text{data}|\theta)$: Likelihood
- $P(\theta)$: Prior belief about θ
- MLE ignores $P(\theta)$
- MAP incorporates prior information.

Regularization is MAP

MLE with Regularization:

MAP as Penalized MLE:

• Let
$$P(\theta) \propto e^{-\lambda R(\theta)}$$
. Then
 $\widehat{\theta}_{MAP} = argmax_{\theta}[\log L(\theta) + \log P(\theta)] = \widehat{\theta}_{reg}$

Why is learning with latent variables harder?

• In fully-observed IID settings, the log-likelihood decomposes into a sum of local terms:

 $\boldsymbol{\ell}_{c}(\boldsymbol{\theta}; D) = \log p(x, z \mid \boldsymbol{\theta}) = \log p(z \mid \boldsymbol{\theta}_{z}) + \log p(x \mid z, \boldsymbol{\theta}_{x})$

• With latent variables, all parameters become coupled via marginalization

$$\ell_{c}(\theta; D) = \log \sum_{z} p(x, z \mid \theta) = \log \sum_{z} p(z \mid \theta_{z}) p(x \mid z, \theta_{x})$$

Sum over z is inside log

 X_2

 X_3

 X_1

Solution 1 to LV learning: Expectation-Maximization

- "Guess a value for the LVs, then update it."
- E-step:
 - Compute the expected value of the sufficient statistics of the hidden variables under current estimates of parameters
- M-step:
 - Using the current expected value of the hidden variables, compute the parameters that maximize the likelihood.

Solution 2 to LV learning: Variational Inference

• "Maximize an easier lower-bound of the log-likelihood."

$$\log p(x \mid \theta) \ge E_{z \sim q} [\log p(x, z \mid \theta)] + H(q) + KL(q(z \mid x) \parallel p(z \mid x, \theta))$$

"ELBO": Evidence Lower Bound

- We choose a family of variational distributions (i.e., a parameterization of a distribution of the latent variables) such that the expectations are computable.
- Then, we **maximize the ELBO** to find the parameters that gives as tight a bound as possible on the marginal probability of x.

Solution 3 to LV learning: Monte Carlo

- "Define a distribution by drawing samples instead of a closed-form."
- Draw random samples from desired distribution
- Yield a stochastic representation of desired distribution

•
$$E_p[f(x)] = \frac{\sum_m f(X_m)}{|m|}$$

- Asymptotically exact
- Challenges:
 - How to draw samples from desired distribution?
 - How to know we've sampled enough?

Solution 4 to LV learning: Deep Learning

- "Define the likelihood of latent variables as delta functions."
- Define our probabilistic model such that

$$p(z \mid x; \theta) = \delta(z - f(x; \theta))$$
, i.e. $z = f(x; \theta)$,

• Then

$$p(y \mid x; \theta) = p(y \mid f(x; \theta))$$

• By properly defining f with convenient activation functions (like ReLU or sigmoid), then $\hat{\theta}_{MLE}$ can be estimated by backpropagating error on y.

Deep Learning

Deep Learning via Backpropagation

• Neural networks are function compositions that can be represented as computation graphs:

• By applying the chain rule, and working in reverse order, we get:

$$\frac{\partial f_n}{\partial x} = \sum_{i_1 \in \pi(n)} \frac{\partial f_n}{\partial f_{i_1}} \frac{\partial f_{i_1}}{\partial x} = \sum_{i_1 \in \pi(n)} \frac{\partial f_n}{\partial f_{i_1}} \sum_{i_2 \in \pi(i_1)} \frac{\partial f_{i_1}}{\partial f_{i_2}} \frac{\partial f_{i_1}}{\partial x} = \dots$$

Convolutional Neural Networks [LeCun 1989]

Autoencoders

[Michelucci 2022]

Deep Generative Models

- Define probabilistic distributions overs a set of variables
- "Deep" means multiple layers of hidden variables!
- Many forms:
 - Variational Autoencoders
 - GANs
 - Diffusion Models

The "Transformer"

• Original Transformer (Vaswani et al., 2017):

- Encoder-decoder architecture for sequence-tosequence tasks
- Parallelizable self-attention instead of recurrence
- Positional encodings enable order sensitivity
- Encoder: Processes input sequence
- Decoder: Generates output sequence using masked attention + encoder output
- Inspired by machine translation (observe full input sequence, predict full output sequence)

Figure 1: The Transformer - model architecture.

GPT: From Seq. Transduction to Seq. Modeling

• Original Transformer (Vaswani et al., 2017):

$$P(Y \mid X) = \prod_{t} P(Y_t \mid Y_{< t}, X)$$

- **Conditional** sequence model for tasks like translation (input \rightarrow output)
- Generative Pretrained Transformer (GPT) Models:

$$P(X) = \prod_{t} P(X_t \mid X_{< t})$$

- Unconditional generative model over raw text
- Architectural consequence: **no encoder**, only a decoder with causal structure

LLMs: The definition of Generative Models

• **Probabilistic objective:** Max log-likelihood of observed seqs $\max_{\theta} \sum_{i} \sum_{t} \log P_{\theta}(X_{i,t} \mid X_{i,<t})$

> [Radford et al., <u>Improving Language</u> Understanding by Generative Pre-Training]

LLM Training: Unsupervised \rightarrow Supervised

https://cameronrwolfe.substack.com/p/understanding-and-using-supervised

Open Directions in Graphical Models

Why GMs?

What's the point of GMs in the AI era?

- A language for communication
- A language for computation
- A language for development

Context-Adaptive GMs

Interpreting complex systems

Elephant

- Zooming in for **personalization**
- Zooming out for **inclusion**

Latent heterogeneity

- Disease **subtypes**
- Multiple-hit mechanisms
- Prior **exposures**

Multi-modal effects

Dog

- Identifying and eliminating **biases**
- Connecting statistics to foundation models

Context-Adaptive GMs

Varying-Coefficients Regression

From $Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$ To $Y = \beta_0(C) + \beta_1(C) X_1 + \dots + \beta_p(C) X_p + \epsilon$

Parameter-generating functions, each $R^m \rightarrow R$ Linear [Hastie & Tibshirani 1993] Splines [Lu et al 2015] Trees [Deshpande et al 2023]

Varying-Coefficients Regression

From $Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$ To $Y = \beta_0(C) + \beta_1(C) X_1 + \dots + \beta_p(C) X_p + \epsilon$

Parameter-generating functions, each $R^m \rightarrow R$

Can these be neural networks?

Contextualized learning: A Recipe

1. Define a differentiable objective for your model of interest

2. Replace model parameters with a differentiable context encoder

3. (Optional) Re-parameterize the context encoder to constrain the solution space

4. Optimize end-to-end

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} \ell(X_{i}, \theta) \qquad X \in \mathbb{R}^{n \times p}$$

$$\hat{\Phi} = \arg\min_{\Phi} \sum_{i}^{n} \ell(X_{i}, \Phi(C_{i})) \qquad \begin{array}{l} C \in \mathbb{R}^{n \times c} \\ \Phi(c) \colon \mathbb{R}^{c} \to \mathbb{R}^{|\theta|} \end{array}$$

$$\Phi(c; \phi, A) \coloneqq \sum_{k=1}^{K} \phi(c)_{k} A_{k} \qquad \begin{array}{l} K \ll |\theta| \\ A \in \mathbb{R}^{K \times |\theta|} \\ \phi(c) \colon \mathbb{R}^{c} \to \mathbb{R}^{K} \end{array}$$

$$\hat{\phi}, \hat{A} = \arg\min_{\phi, A} \sum_{i}^{n} \ell(X_{i}, \Phi(C_{i}; \phi, A))$$

Toy Example: Linear Regression

Lengerich et al 2023

Toy Example: Linear Regression

Ben Lengerich © University of Wisconsin-Madison 2025

Lengerich et al 2023

Ben Lengerich © University of Wisconsin-Madison 2025

Ellington et al. PNAS 2025 (to appear)

Contextualized GMs enable new studies of biology

Ellington et al. PNAS 2025 (to appear)

- 0 (150/172)

- 1 (20/39)

-2 (7/14)

162

-1 (163/197)

Contextualized GMs enable new studies of biology

Ellington et al. PNAS 2025 (to appear)

Contextualized GMs work within RL too

Want to model recurrent processes of medical decisions as RL policies

Contextualized GMs work within RL too

Contextualized Policy Recovery (CPR)

Contextualized GMs work within RL too

Context connects statistical ML to persistent knowledge

Context connects statistical ML to persistent knowledge

A recent personal story

A core idea of GMs: Modularity \rightarrow interpretability

An **information bottleneck** limits human understanding of complicated ideas...

...but **modular components** can be analyzed sequentially.

GMs + LLMs: Modularity → Automated Interpretability

An **information bottleneck** limits human understanding of complicated ideas...

...but **modular components** can be analyzed sequentially.

GMs + LLMs → Tremendous potential

Surprise-Finding: LLMs vs Human experts

Benchmarked in a **blinded study** against doctors

- 1. GPT and 4 Doctors independently evaluate effects from a GAM.
- 2. Doctors grade other responses. Tell them it's doctors rating doctor explanations. Secretly, LLM explanations were mixed in.

Anomaly Detector	# of Anomalies per Feature	% Ratings of >2 ("Agree")	
		Anomaly identification	Anomaly explanation
Self (Doctor)	0.64(0.55,0.73)	98.9(95.8,100.0)	92.2(70.2,100.0)
Other Doctor	0.64(0.55,0.73)	92.0(85.6,98.4)	82.0(71.4,92.6)
GPT-4	1.0(0.93,1.07)	66.7(54.2,79.2)	63.0(53.6,72.4)
	But more exhaustive	GPT-4 not as good as doctors	

Lengerich et al. JAMIA Open 2025 (to appear)

Surprise-Finding: LLMs vs Human experts

Benchmarked in a **blinded study** against doctors

- 1. GPT and 4 Doctors independently evaluate effects from a GAM.
- 2. Doctors grade other responses. Tell them it's doctors rating doctor explanations. Secretly, LLM explanations were mixed in.

Many open problems and opportunities

- Scalability of Contextualized Learning: Systems for storing, accessing, and generating context-specific models
- Integration with Emerging Biomedical Technologies: More views of personal context (wearables) and fine-grained interventions (CRISPR, Perturb-seq)
- Combining Episodic and Semantic Memory: Beyond Archetypes
- Ethical and Privacy Considerations: Which features should be used to personalize risk models? Which should be invariant?
- **Robust Local Interpretations:** Can we guarantee robustness of local interpretations via smoothness, (adversarial) robustness, or other properties?
- Federated learning and data sharing: How can local models be pooled into meta-models with only minimal access to original data?
- **Communication protocols:** Should all communication be routed through the meta-model?
- **Resource efficiency and accessibility:** When can the meta-model be ignored?
- Longitudinal studies and real-world impact: What kinds of personalized interventions really make a difference?

What will you do with the language of complexity?

