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Chapter 3The Elimination AlgorithmIn this hapter we disuss the problem of omputing onditional and marginal probabilities ingraphial models|the problem of probabilisti inferene. Building on the ideas in Chapter 2,we show how the onditional independenies enoded in a graph an be exploited for eÆientomputation of onditional and marginal probabilities.We take a very onrete approah in the urrent hapter, basing the presentation on a simple\elimination algorithm" for probabilisti inferene. This algorithm applies equally well to diretedand undireted graphs. It requires little formal mahinery to desribe and to analyze. On the otherhand, the algorithm has its limitations, and is not our �nal word on the inferene problem. But itis a good plae to start.3.1 Probabilisti infereneLet E and F be disjoint subsets of the node indies of a graphial model, suh that XE and XFare disjoint subsets of the random variables in the domain. Our goal is to alulate p(xF jxE) forarbitrary subsets E and F . This is the general probabilisti inferene problem for graphial models(direted or undireted).We begin by fousing on direted graphs. Almost all of our work, however, will transfer toundireted graphs with little or no hange. Our subsequent treatment of undireted models inSetion 3.1.3 will be short and sweet.Throughout the hapter we limit ourselves to the probability of alulating the onditionalprobability of a single node XF|whih we refer to as the \query node"|given an arbitrary set ofnodes XE . This is a limitation of the simple elimination algorithm that we disuss in this hapter,and is not a limitation of the more general algorithms that we disuss in later hapters.Graphially we indiate the set of onditioning variables by shading the orresponding nodes inthe graph. Thus, the dark shading in Figure 3.1 indiates the nodes (indexed by E) on whih weondition. We will often refer to these nodes as the evidene nodes. The unshaded nodes (indexedby F ) are the nodes for whih we wish to ompute onditional probabilities. Finally, the lightlyshaded nodes, indexed by R = V n(E[F ), are the nodes that must be marginalized out of the jointprobability so that we an fous on the onditional, p(xF jxE), of interest. Thus, symbolially, we3
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Figure 3.1: The dark shaded node, X6, is the node on whih we ondition, the lightly shaded nodes,fX2;X3;X4;X5g, are nodes that are marginalized over, and the unshaded node, X1 is the nodefor whih we wish to alulate onditional probabilities. Thus, for this example, we have E = f6g,F = f1g, and R = f2; 3; 4; 5g.must ompute the marginal: p(xE; xF ) =XxR p(xE ; xF ; xR); (3.1)whih an be further marginalized to yield p(E):p(xE) =XxF p(xE; xF ); (3.2)from whih we obtain the onditional probability:p(xF jxE) = p(xE; xF )p(xE) : (3.3)We will be interested in �nding e�etive omputational methods for making these alulations.A speial ase of the general problem is worth noting. Consider the ase of just two nodes,X and Y , as shown in Figure 3.2(a). This model is spei�ed in terms of the distributions p(x)and p(y jx), reeting the arrow from X to Y . Suppose that we ondition on X, as shown inFigure 3.2(b), and wish to alulate the probability of Y . This \alulation" is simply a tablelookup using p(y jx). On the other hand, suppose that we ondition on Y and wish to alulate theprobability of X, as indiated in Figure 3.2(). This is ahieved via an appliation of Bayes rule:p(x j y) = p(y jx)p(x)p(y) : (3.4)where the denominator is alulated as follows:p(y) =Xx p(y jx)p(x): (3.5)
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(a) (b) (c)Figure 3.2: (a) A two-node model. (b) Conditioning on X involves a simple evaluation of p(y jx).() Conditioning on Y requires the use of Bayes rule.Can we �nd an eÆient extension of these familiar ideas to general graphs?The summations in Eq. (3.1) and Eq. (3.2) should give us pause. The summationPxR expandsinto a sequene of summations, one for eah of the random variables indexed by R. If eah suhrandom variable an take on k values, and there are jRj variables, we obtain kjRj terms in oursummation. A similar statement applies to the summation PxF . With jF j and jRj in the dozensor hundreds in typial ases, naive summation is infeasible.We need to take advantage of the fatorization o�ered by the de�nition of the joint probability.If we do not take advantage of the fatorization we will be in trouble performing even a singlesummation, muh less a sequene of summations. Consider summing p(x1; x2; : : : ; x6) with respetto x6, where we naively represent the joint probability as a table of size k6. (Reall that k is thenumber of values that eah variable xi an take on, assumed independent of i for simpliity.) Giventhat we must perform the sum for eah value of the variables fx1; x2; : : : ; x5g, we see that we mustperform O(k6) operations to do a single sum (essentially, we must touh eah entry in the table).To redue the omputational omplexity let us instead represent the joint probability in its fatoredform (f. Eq. (2.3)) and exploit the distributive law:p(x1; x2; : : : ; x5) = Xx6 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5) (3.6)= p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)Xx6 p(x6 jx2; x5): (3.7)The summation over x6 is now applied to p(x6 jx2; x5), a table of size k3. We have redued theoperation ount from O(k6) to O(k3), a signi�ant improvement.1Suessive summations also take advantage of the fatorization. A summation over, say, x5,an also be moved along the hain of fators until it enounters a fator involving x5. If eah suhsummation is of redued omplexity, say O(kr) for some r, then the result is an algorithm that1Of ourse this sum is unity by the de�nition of onditional probability, and thus we don't atually have to performany operations at all, but let us pretend not to know that.



6 CHAPTER 3. THE ELIMINATION ALGORITHMsales as O(nkr) instead of O(kn). Of ourse, the summations reate intermediate fators that maylink variables, making it not entirely lear whether or not we an keep r small. It is here thatgraphial methods are helpful. We an determine the parameter r by a graph-theoreti algorithm.Let us introdue the basi ideas in the ontext of an example. Referring to the graph inFigure 3.1, let us ondition on the event fX6 = x6g and alulate the onditional probabilityp(x1 jx6).A point to note at the outset is that x6 is a �xed onstant in this alulation and does notontribute to the omputational omplexity of the alulation. Thus, while the table representingp(x6 jx2; x5) is nominally a three-dimensional table, the observation of X6 involves taking a two-dimensional slie of this table. Unfortunately our notation is ambiguous in this regard; we have beenusing \x6" as a variable that ranges over the possible values of X6. In partiular it is meaningful tosum over \x6." In the remainder of this setion, to avoid onfusion, we refer to a partiular �xedvalue of X6 as \�x6." Thus, we wish to ompute p(x1 j �x6), for any x1 and for a partiular �x6.We begin by omputing the probability p(x1; �x6) by summing over fx2; x3; x4; x5g. We introduesome notation to refer to intermediate fators that arise when performing these sums. In partiular,let mi(xSi) denote the expression that arises from performing the sum Pxi , where xSi are thevariables, other than xi, that appear in the summand. Thus we have:p(x1; �x6) = Xx2 Xx3 Xx4 Xx5 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(�x6 jx2; x5) (3.8)= p(x1)Xx2 p(x2 jx1)Xx3 p(x3 jx1)Xx4 p(x4 jx2)Xx5 p(x5 jx3)p(�x6 jx2; x5) (3.9)= p(x1)Xx2 p(x2 jx1)Xx3 p(x3 jx1)Xx4 p(x4 jx2)m5(x2; x3) (3.10)where we de�ne m5(x2; x3) , Px5 p(x5 jx3)p(�x6 jx2; x5). (Note that to simplify notation we donot indiate expliitly the dependene of this term on the onstant �x6). Computing m5(x2; x3) haseliminated X5 from further onsideration in the omputation. As we will see later, this algebrainotion of \elimination" orresponds to a graphial notion of elimination in whih the node X5 isremoved from the graph. We ontinue the derivation:p(x1; �x6) = p(x1)Xx2 p(x2 jx1)Xx3 p(x3 jx1)m5(x2; x3)Xx4 p(x4 jx2) (3.11)= p(x1)Xx2 p(x2 jx1)m4(x2)Xx3 p(x3 jx1)m5(x2; x3): (3.12)Of ourse, m4(x2) ,Px4 p(x4 jx2) is equal to one by de�nition, and in pratie we would not dothis sum, but let us be systemati and keep the term in our alulations. Finally, we have:p(x1; �x6) = p(x1)Xx2 p(x2 jx1)m4(x2)m3(x1; x2) (3.13)= p(x1)m2(x1): (3.14)



3.1. PROBABILISTIC INFERENCE 7From this result we an also obtain the probability p(�x6) by taking an additional sum over x1:p(�x6) =Xx1 p(x1)m2(x1); (3.15)and the desired onditional is obtained by dividing Eq. (3.14) into Eq. (3.15):p(x1 j �x6) = p(x1)m2(x1)Px1 p(x1)m2(x1) : (3.16)Alternatively we an view p(x1; �x6) in Eq. (3.14) as an unnormalized representation of the on-ditional probability p(x1 j �x6)|reall one again that �x6 is a �xed onstant. Thus we obtain theonditional by normalization, where the normalization onstant is given by Eq. (3.15).Lying behind this urry of algebra is a simple general algorithm for omputing marginal proba-bilities. We present this algorithm in Setion 3.1.2. First, however, we set the stage for the generalalgorithm with some preparatory remarks on onditioning.3.1.1 ConditioningTo provide a simple exposition of the general elimination algorithm in Setion 3.1.2, and also tosimplify our exposition of inferene algorithms presented in later hapters, it is useful to make useof a notational trik in whih onditioning is viewed as a summation. This trik will allow us totreat marginalization and onditioning as formally equivalent, and will make it easier to bring thekey operations of the inferene algorithms into fous.Let Xi be an evidene node whose observed value is �xi. To apture the fat that Xi is �xedat the value �xi, we de�ne an evidene potential, Æ(xi; �xi), a funtion whose value is one if xi = �xiand zero otherwise. The evidene potential allows us to turn evaluations into sums: To evaluate afuntion g(xi) at �xi we multiply g(xi) by Æ(xi; �xi) and sum over xi:g(�xi) =Xxi g(xi)Æ(xi; �xi); (3.17)a trik that also extends to multivariate funtions with xi as one of the arguments. In partiular,returning to the example from the previous setion, we an express the evaluation of p(x6 jx2; x5)at �x6 as follows: m6(x2; x5) =Xx6 p(x6 jx2; x5)Æ(x6; �x6); (3.18)where m6(x2; x5) is nothing but p(�x6 jx2; x5).In general, let E be the set of nodes whose values are to be onditioned on. That is, for a spei�on�guration �xE, we wish to ompute p(xF j �xE). Formally, we ahieve this as follows. De�ne thetotal evidene potential : Æ(xE ; �xE) ,Yi2E Æ(xi; �xi); (3.19)



8 CHAPTER 3. THE ELIMINATION ALGORITHMa funtion that is equal to one if xE = �xE and is equal to zero otherwise. Using this potential, wean obtain both the numerator and the denominator of the onditional probability p(xF j �xE) bysummation. Thus: p(xF ; �xE) =XxE p(xF ; xE)Æ(xE ; �xE) (3.20)and: p(�xE) =XxF XxE p(xF ; xE)Æ(xE ; �xE): (3.21)This suggests that it may be useful to de�ne:pE(x) , p(x)Æ(xE ; �xE) (3.22)as a generalized measure that represents onditional probability with respet to E. By for-mally \marginalizing" this measure with respet to xE , we evaluate p(x) at XE = �xE , and ob-tain p(xF ; �xE), an unnormalized version of the onditional probability p(xF j �xE). Moreover, bymarginalizing over x, we obtain the total \mass" p(�xE).This tati is partiularly natural in the ase of undireted graphs, where multipliation by anevidene potential Æ(xi; �xi) an be implemented by simply rede�ning the loal potentials  (xi) fori 2 E. Thus, we de�ne:  Ei (xi) ,  i(xi)Æ(xi; �xi); (3.23)for i 2 E. Leaving all other lique potentials unhanged, that is, letting  EC (xC) ,  C(xC), forC =2 ffig : i 2 Eg, we obtain the desired unnormalized representation:pE(x) , 1Z YC2C  EXC (xC): (3.24)Moreover, sine we are working with an unnormalized representation, we may as well drop the1=Z fator, and simply work with QC2C  EXC (xC) as an unnormalized representation of onditionalprobability.It should be lear that the use of evidene potentials is merely a piee of formal trikery thatwill (turn out to) simplify our desription of various inferene algorithms. In pratie we would notatually perform the sum over a funtion that we know to be zero over most of the sample spae,but rather we would take \slies" of the appropriate probabilities or potentials. Thus, in evaluatingp(x6 jx2; x5) at X6 = �x6, while formally we an view ourselves as multiplying by Æ(x6; �x6) andsumming over x6, algorithmially we would simply take the appropriate two-dimensional slie ofthe three-dimensional table representing p(x6 jx2; x5).3.1.2 Elimination and direted graphsIn this setion we desribe a general algorithm for performing probabilisti inferene in diretedgraphial models.At eah step of the algorithm, we perform a sum over a produt of funtions. The funtionsthat an appear in suh sums inlude the original loal onditional probabilities, p(xi jx�i), the



3.1. PROBABILISTIC INFERENCE 9evidene potentials, Æ(xi; �xi), and the intermediate fators, mi(xSi), generated by previous sums.All of these funtions are de�ned on loal subsets of nodes, and we use the generi term \potential"to refer to all of them.2 Thus our algorithm will involve taking sums over produts of potentialfuntions.The algorithm works as follows (see Figure 3.3 for a summary). Given a graph G = (V; E), anevidene set E, and a query node F , we �rst hoose an elimination ordering I suh that F appearslast in the ordering.3 Throughout the algorithm we maintain an ative list of potential funtions.The ative list is initialized to hold the loal onditional probabilities, p(xi jx�i), for i 2 V, and theevidene potentials, Æ(xi; �xi), for i 2 E. At eah step of the algorithm, we �nd all those potentialson the ative list that referene the next node (all it Xi) in the elimination ordering I. Thesepotential funtions are removed from the ative list. We take the produt of these funtions andsum this produt with respet to xi. This de�nes a new intermediate fator, mi(xSi), where xSiare the variables (other than xi) that appear in the summand. This intermediate fator is addedto the ative list. We then proeed to the next node in the elimination ordering.Note that we have introdued the notation Ti = fig [ Si in the desription of the algorithmin Figure 3.3. The subset Ti indexes the set of all variables that appear in the summand of theoperator Pxi . We give a graph-theoreti interpretation of Ti later in the hapter.The algorithm terminates when we arrive at the �nal node in the elimination ordering, thequery nodeXF . The produt of potentials on the ative list at this point de�nes the (unnormalized)onditional probability, p(xF ; �xE). Summing this produt over xF yields the normalization fatorp(�xE).Let us now return to the example in Setion 3.1 and show how the steps of Eliminate orre-spond to the steps in the algebrai alulation in that setion. The evidene node in this exampleis X6 and the query node is X1. We hoose the elimination ordering I = (6; 5; 4; 3; 2; 1), in whihthe query node appears last.We begin by plaing the loal onditional probabilities, fp(x1); : : : ; p(x6 jx2; x5)g, on the ativelist. We also plae Æ(x6; �x6) on the ative list.We �rst eliminate node X6. The potential funtions on the ative list that referene x6 arep(x6 jx2; x5) and Æ(x6; �x6). Thus we have �6(x2; x5; x6) = p(x6 jx2; x5)Æ(x6; �x6). Summing thisexpression with respet to x6 yields m6(x2; x5) = p(�x6 jx2; x5). We plae this potential on theative list, having removed p(x6 jx2; x5) and Æ(x6; �x6). We have simply evaluated p(x6 jx2; x5) at�x6. We now eliminate X5. The potentials on on the ative list that referene x5 are p(x5 jx3)2The reader may be onerned that we are using the term \potential" somewhat loosely here. In partiular we areusing it in the ontext of direted graphs and in the ontext of subsets that may not be liques; this usage lashes withthe de�nition of \potential" in Chapter ??. We hope that the reader will forgive the seeming abuse of terminology.It is worth noting, however, that the \potentials" disussed in this setion are in fat honest-to-goodness potentials,but not with respet to G. Rather they are potentials on the liques of a di�erent graph, a graph known as the moralgraph Gm. This point will be lari�ed in Setion ?? below.3We will not disuss the hoie of elimination ordering in this hapter, but instead will defer this (non-trivial)problem until Chapter 17, where it will arise in a more general way in the ontext of the juntion tree algorithm.For now, let the ordering I be arbitrary, under the onstraint that F appears last. We might enourage the reader,however, to start to ponder how to haraterize good elimination orderings. Some useful food for thought in thisregard will be provided in Setion ?? below.
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Eliminate(G; E; F )Initialize(G; F )Evidene(E)Update(G)Normalize(F )Initialize(G; F )hoose an ordering I suh that F appears lastfor eah node Xi in Vplae p(xi jx�i) on the ative listendEvidene(E)for eah i in Eplae Æ(xi; �xi) on the ative listendUpdate(G)for eah i in I�nd all potentials from the ative list that referene xi and remove them from the ative listlet �i(xTi) denote the produt of these potentialslet mi(xSi) =Pxi �i(xTi)plae mi(xSi) on the ative listendNormalize(F )p(xF j �xE) �F (xF )=PxF �F (xF )Figure 3.3: The Eliminate algorithm for probabilisti inferene on direted graphs.
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Figure 3.4: The dark shaded node, X6, is the nodes on whih we ondition, the lightly shadednodes, fX2;X3;X4;X5g, are the nodes that are marginalized over, and the unshaded node, X1, isthe node for whih we wish to alulate onditional probabilities.and m6(x2; x5). We remove them, and de�ne the produt �5(x2; x3; x5). Summing over x5 yieldsm5(x2; x3) (f. Eq. (3.11)).The only potential that referenes X4 is p(x4 jx2). The elimination of X4 thus involves summingp(x4 jx2) with respet to x4 to obtain the fatorm4(x2). This fator is identially one and in pratiewe would not bother omputing it.Eliminating X3 involves taking the sum over �3(x1; x2; x3) = p(x3 jx1)m5(x2; x3) to yieldm3(x1; x2) and we are now at Eq. (3.13) in the earlier derivation.We now eliminate X2 to obtain �1(x1) = p(x1)m2(x1), whih is the \unnormalized onditionalprobability," p(x1; �x6). Eliminating X1 yields m1 =Px1 �1(x1), whih is the normalization fator,p(�x6).3.1.3 Elimination and undireted graphsIn the ase of direted models, we have shown that the problem of alulating onditional proba-bilities an be usefully viewed in terms of a simple elimination algorithm. The same perspetiveapplies to undireted models, and indeed the entire Eliminate algorithm from Figure 3.3 goesthrough without essential hange to the undireted ase.The only hange needed to handle the undireted ase ours in the Initialize proedure,where instead of using loal onditional probabilities we initialize the ative list to ontain thepotentials f XC (xC)g.Let us briey onsider an example. Paralleling the example from Setion 3.1.2 we alulate theprobability p(x1 j �x6) for the graph in Figure 3.4. We represent the joint probability on the graphvia potential funtions on the liques fX1;X2g fX1;X3g, fX2;X4g, fX3;X5g, and fX2;X5;X6g.We �rst alulate the probability p(x1; �x6). To simplify the presentation we drop the subsriptin the  XC (xC) notation, relying on the argument to the funtion to make it lear whih potentialfuntion is being referred to. Also we again make use of the notation mi(xSi) to denote the



12 CHAPTER 3. THE ELIMINATION ALGORITHMintermediate fator that results from the summation over xi. We have:p(x1; �x6) = 1ZXx2 Xx3 Xx4 Xx5 Xx6  (x1; x2) (x1; x3) (x2; x4) (x3; x5) (x2; x5; x6)Æ(x6; �x6)= 1ZXx2  (x1; x2)Xx3  (x1; x3)Xx4  (x2; x4)Xx5  (x3; x5)Xx6  (x2; x5; x6)Æ(x6; �x6)= 1ZXx2  (x1; x2)Xx3  (x1; x3)Xx4  (x2; x4)Xx5  (x3; x5)m6(x2; x5)= 1ZXx2  (x1; x2)Xx3  (x1; x3)m5(x2; x3)Xx4  (x2; x4)= 1ZXx2  (x1; x2)m4(x2)Xx3  (x1; x3)m5(x2; x3)= 1ZXx2  (x1; x2)m4(x2)m3(x1; x2)= 1Zm2(x1): (3.25)Marginalizing further over x1 yields: p(�x6) = 1ZXx1 m2(x1); (3.26)and we alulate the desired onditional as:p(x1 j �x6) = m2(x1)Px1 m2(x1) ; (3.27)where the normalization fator Z anels.Note that the alulation in the example is formally idential to the orresponding alulationfor direted graphs. Note, however, that the sum m4(x2), whih earlier ould be omitted, no longerneessarily sums to one and must be expliitly arried along in the alulation.Finally, a remark on the omputation of marginal probabilities p(xi). For a marginal probabilitythe normalization fator Z does not anel, and must be alulated expliitly. Just as in the otheralulations in this setion, however, the alulation of Z is a summation over the unnormalizedrepresentation of the joint probability, and indeed it is simply a summation over all of the variables.To obtain the marginal p(xi), we would de�ne an elimination ordering in whih xi is the �nalvariable, and then normalize the result to alulate Z and obtain the marginal.In the direted ase, a variable that is parentless has its marginal represented expliitly in theparameterization of the graphial model and no alulation is needed. In general, nodes that aredownstream from a target node an simply be deleted, and marginalization involves an inferenealulation involving the anestors of the node. The worst ase is a leaf node. In the undiretedase, there is no notion of \anestor," and essentially all nodes are worst ase. On the other hand,one Z is alulated from a partiular elimination ordering, it an be used to normalize othermarginal probabilities.



3.2. GRAPH ELIMINATION 13UndiretedGraphEliminate(G; I)for eah node Xi in Ionnet all of the remaining neighbors of Xiremove Xi from the graphendFigure 3.5: A simple greedy algorithm for eliminating nodes in an undireted graph G.3.2 Graph eliminationThe simple Eliminate algorithm aptures the key algorithmi operation underlying probabilistiinferene|that of taking a sum over a produt of potential funtions. What an we say about theoverall omputational omplexity of the algorithm? In partiular, how an we ontrol the \size" ofthe summands that appear in the sequene of summation operations?In this setion, we show that questions regarding the omputational omplexity of the Elimi-nate algorithm an be redued to purely graph-theoreti onsiderations. This graphial interpre-tation will also provide hints about how to design improved inferene algorithms that overome thelimitations of Eliminate.3.2.1 A graph elimination algorithmLet us put aside marginalization and probabilisti inferene for a moment, and onentrate solelyon graph-theoreti manipulations. We desribe a simple proedure that eliminates nodes in agraph. As will beome lear, this proedure aptures the graph-theoreti operations underlyingEliminate.We begin by desribing a node-elimination algorithm for undireted graphs, making the link todireted graphs shortly.Assume that we are given an undireted graph G = (V; E) and an elimination ordering I.We desribe a simple graph-theoreti algorithm that suessively eliminates the nodes of G. Inpartiular, at eah step, the algorithm eliminates the next node in the ordering I, where \eliminate"means removing the node from the graph and onneting the (remaining) neighbors of the node.The algorithm, whih we refer to as UndiretedGraphEliminate, is presented in Figure 3.5.We will be interested in the reonstituted graph; the graph ~G = (V; ~E), whose edge set ~E is asuperset of E , inorporating all of the original edges E , as well as any new edges reated during arun of UndiretedGraphEliminate.Consider in partiular the graph in Figure 3.6(a) and the elimination ordering (6; 5; 4; 3; 2; 1).Let us run through the graphial elimination proedure. Starting with node X6 we �rst onnetits neighbors, adding an edge between X2 and X5, as shown in Figure 3.6(b). We then remove X6,whih yields Figure 3.6(). Moving to X5, we onnet its neighbors, X2 and X3, and remove X5,whih yields Figure 3.6(d). The proedure ontinues in Figure 3.6(e){(g), ulminating in a graphwith the single node X1, whih is then removed yielding the empty graph.
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(g)Figure 3.6: A run of the elimination algorithm under the elimination ordering (6; 5; 4; 3; 2; 1). Theoriginal graph is shown in (a).
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Figure 3.7: The reonstituted graph, showing the edges that were added during the eliminationproess.Figure 3.7 shows the reonstituted graph, where we have retained the edges that were reatedduring the elimination proedure (in partiular, the edges between X2 and X3 and between X2and X5). This graph turns out to have some important graph-theoreti properties, propertieswhih underly the omprehensive theory of inferene that will be the subjet of Chapter 17.4 Forurrent purposes, however, the relevant properties of the graph an be aptured by reording theelimination liques of the graph. In partiular, eah time we remove a node Xi in the seond stepof the algorithm, let us reord the olletion of nodes that are the neighbors of Xi at that moment,inluding Xi itself. These nodes form a fully-onneted subset of nodes by virtue of the �rst step ofthe algorithm; that is, they form a lique. We denote the set of indies of the nodes in this liqueas Ti. Thus, in our example, T6 = f2; 5; 6g and T5 = f2; 3; 5g. (Note that index 6 does not appearin T5 beause X6 has already been eliminated when we proess node X5).3.2.2 Graph elimination and marginalizationWhen we perform a marginalization operation, removing a random variable from a joint distribu-tion, we perform a sum over the produt of all fators that depend on that random variable. Thisouples together all of the other random variables that appear in those fators. Thus, for example,summing the produt  (x3; x5)m6(x2; x5) with respet to x5 reates an intermediate fator thatinvolves x2 and x3. This new fator does not in general fatorize with respet to x2 and x3; thus, wehave an indued dependeny between x2 and x3. Subsequent operations will have to treat x2 andx3 together. UndiretedGraphEliminate makes this oupling expliit, by linking the neighborsof the node being summed over.In general, as we now show, the elimination liques in UndiretedGraphEliminate are thegraph-theoreti ounterparts of the sets of variables on whih summations operate in probabilisti4For readers who annot bear the wait, the key property of the reonstituted graph is that it is a triangulatedgraph; indeed, our elimination proedure is a simple algorithm for triangulating a graph.



16 CHAPTER 3. THE ELIMINATION ALGORITHMinferene using Eliminate.Consider the argument xTi to the funtion �i(xTi) in Eliminate, the funtion whih is thesummand for the operatorPxi . As our notation suggests, the variables referened by �i are exatlythose in the elimination lique reated by UndiretedGraphEliminate upon elimination of Xi.To see this, note that any potential removed from the ative list by Eliminate (when summing overxi) must referene xi. Now onsider any other variable xj referened by �i(xTi). We want to showthat Xi and Xj must be neighbors in the graph onstruted by UndiretedGraphEliminate.There are two ases to onsider, orresponding to the two kinds of potentials that an link variables:(1) If the potential is one of the original potentials  C(xC), then Xj is neessarily linked to Xi,beause C is a lique (by de�nition). (2) If xi and xj appear together in an intermediate fatormk(xSk), then this term was reated by the elimination of an earlier node Xk. At the moment ofeliminating Xk, UndiretedGraphEliminate must have linked the nodes Xi and Xj . Thus, ineither ase, Xj is a neighbor of Xi, and these nodes must appear together in the elimination liqueXTi .3.2.3 Computational omplexityLet us now onsider the omputational omplexity of Eliminate. At eah step we must sum over avariable xi for all on�gurations of the variables in the summand �i(xTi). Assuming that there is nospeial algebrai struture in this summand that an be exploited, the time and spae omplexitiesare exponential in the number of variables in the subset Ti. That is, the overall omplexity of thealgorithm is determined by the number of variables in the largest elimination lique. Thus, the ques-tion of the omputational omplexity of Eliminate an be redued to the purely graph-theoretiquestion of the size of the largest elimination lique reated by UndiretedGraphEliminate.The problem of obtaining a largest elimination lique that is as small as possible, under allpossible elimination orderings, is a well-studied problem in graph theory. The problem is generallyexpressed in terms of a parameter k known as the treewidth, whih is one less than the smallestahievable value of the ardinality of the largest elimination lique, where we range over all possibleelimination orderings.Consider for example, the star graph on n nodes shown in Figure 3.8(a). If we were to eliminatethe entral node �rst, we would immediately link all other nodes, reating an elimination liqueof size n. On the other hand, if we eliminate all of the leaf nodes �rst we never reate a lique ofardinality greater than two. Indeed, the treewidth of this graph is equal to one.Figure 3.8(b) shows a seond example, in whih it an be veri�ed that it is possible to eliminatethe nodes in suh a way that the largest lique reated is of size three. The treewidth is thus equalto two.The general problem of �nding the best elimination ordering of a graph|an elimination orderingthat ahieves the treewidth|turns out to be NP-hard. We disuss this hardness result, and itsonsequenes for probabilisti inferene, in more detail in Chapter 17. Indeed, in that hapterwe disuss an inferene algorithm (the juntion tree algorithm) that generalizes Eliminate andneessitates a deeper disussion of the treewidth problem and methods for takling it. As we willshow, there are a number of useful heuristis for �nding good elimination orders, and these anprovide viable solutions in pratial problems.
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(a) (b)Figure 3.8: (a) A graph whose treewidth is equal to one. (b) A graph whose treewidth is equal totwo.In the meantime, all of the graphs that we study in intervening hapters will turn out to involvegraphs that have \obvious" optimal elimination orderings.The NP-hardness result should be taken as injeting a autionary note into our study of elim-ination methods, suggesting that we should not expet Eliminate to provide a omputationally-eÆient solution to the general problem of probabilisti inferene. On the other hand, we learlyshould never have expeted any suh general solution from Eliminate. The fully-onneted graph,for example, yields a single lique ontaining all of the nodes, under all possible elimination order-ings, and thus has no graph-theoreti struture that Eliminate an exploit. To have any hope foreÆient probabilisti inferene in suh a graph, we need to hope that other strutural features ofprobability theory an be brought to bear.5We an also take the NP-hardness result as providing a risp statement of the omputationalbottlenek that arises in Eliminate. Indeed, note that UndiretedGraphEliminate providesa pratially useful tool for assessing the severity of this bottlenek. For a given eliminationordering, we an obtain a heap assessment of the predited running time of Eliminate by runningUndiretedGraphEliminate. If UndiretedGraphEliminate yields elimination liques ofreasonably small ardinality, then we know that it is viable to run Eliminate.3.2.4 Graph elimination and direted graphsAll of the onsiderations of the previous three setions also apply to direted graphs. There is,however, a minor idiosynray of direted graphial models that must be addressed if we are to usethe onept of \elimination lique" to analyze the direted version of Eliminate.The funtions that are used to initialize the ative list in the direted ase are onditionalprobabilities, p(xi jx�i). Note that a pair of variables Xj and Xk that are parents of Xi are linked5That is, there may be speial algebrai struture in the potentials, or symmetries, or simpli�ations broughtabout by laws of large numbers. These issues will return in our onsideration of approximate inferene algorithms,in Chapter 20 and Chapter 21.



18 CHAPTER 3. THE ELIMINATION ALGORITHMDiretedGraphEliminate(G; I)Gm = Moralize(G)UndiretedGraphEliminate(Gm; I)Moralize(G)for eah node Xi in Ionnet all of the parents of Xienddrop the orientation of all edgesreturn GFigure 3.9: An algorithm for eliminating nodes in an direted graph G.
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Figure 3.10: The moral graph orresponding to the direted graph in Figure 2.1.funtionally by their presene in the funtion p(xi jx�i), but they are not neessarily neighbors inthe graph G (e.g., X2 and X5 are not linked in Figure 3.1). This breaks the relationship betweenelimination liques and sets of arguments that we established in the previous setion for undiretedgraphs.There is a simple �x. To de�ne the elimination liques for a direted graph, �rst onnet all ofthe parents of eah node|this aptures the basi fat that fators involving all variables X�i willneessarily appear in our alulations. Then drop the orientation of all of the edges in the graph,onverting the graph to an undireted graph. This proedure, of \marrying" the parents of thenodes in a direted graph and onverting to an undireted graph, is referred to as moralization.The resulting graph is referred to as a moral graph. We use moralization as a subroutine in thealgorithm, DiretedGraphEliminate, for eliminating direted graphs (see Figure 3.9).The graph in Figure 3.10 is the moral graph orresponding to the direted graph in Figure 2.1.



3.3. DISCUSSION 19Note that (in the elimination order that we have been using in our example) X6 is eliminated beforeits parents X2 and X5, and the elimination step already adds a link between these two nodes. Thatis, in this ase, we do not need to moralize; elimination does it for us. On the other hand, if aparent of X6 appears before X6 in the elimination order, we need to moralize expliitly. Considerin partiular an elimination ordering in whih X5 is eliminated �rst. The other parent, X2, is not aneighbor of X5 when the latter node is eliminated, and thus is not inluded within the eliminationlique of X5. This fails to apture the fat that summing over X5 reates an intermediate fatorthat refers to X2 and the other neighbors of X5. In general we need to moralize in the diretedgraphial setting if we want the elimination liques to apture all suh dependenies.The onsiderations in this setion may help to explain the important role that undiretedgraphial models play in designing and analyzing inferene algorithms, a role that we will see againin later hapters, even when the original graphial model is direted. In a direted model, the basifators that appear in the joint probability are onditional probabilities. There is of ourse a greatdi�erene between the appearane of a variable on the left-hand or right-hand side of a onditionalprobability. From the point of view of Eliminate, however, this di�erene is irrelevant. When wesum over xk, the fator p(xi jxj ; xk) and the fator p(xj jxi; xk) both reate an intermediate fatorlinking xi and xj . Thus, to understand the omputational omplexity of inferene, we need to ignorethe diretionality assoiated with a onditional probability. The undireted graphial formalism,whih treats suh a probability as a general potential,  (xi; xj ; xk), does this automatially.3.3 DisussionOur presentation of the elimination algorithm for probabilisti inferene raises a number of ques-tions:� Can we prove that it works?� What are its limitations?� Can it be generalized?Detailed answers to these questions will emerge in later hapters, but let us try to provide someshort answers here.It is not diÆult to prove that the algorithm that we have presented is orret. Indeed, we askthe reader to provide a proof by indution in Exerise ??, and we present a proof by indution of theorretness of a losely-related algorithm (the Sum-Produt algorithm) in Chapter 4. Moreover,in Chapter 17 we prove the orretness of the general juntion tree algorithm, an algorithm thatgeneralizes both Eliminate and Sum-Produt.The Eliminate algorithm has a number of limitations, some whih are easily orreted andothers whih are not. In partiular, taking Eliminate seriously as an algorithm to be implementedon a omputer reveals a number of ineÆienies. Most importantly, the use of a single \ative list" asa data struture requires an ineÆient traversal of the entire list every time the algorithm eliminatesa node. This an be �xed by maintaining a separate list, or \buket," for eah node. Wheneverthe algorithm reates a new intermediate fator, mi(xSi), it sans the elimination ordering I, and
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Y Y Y YFigure 3.11: A hain-strutured graphial model.�nds the �rst ourrene of an index in Si. It then plaes mi(xSi) in the buket assoiated withthat index. This \buket elimination" approah to elimination is explored in Exerise ??.A more serious limitation of the basi elimination methodology is the restrition to a singlequery node. While it is not diÆult to develop variations of the algorithm that handle small sets ofinteronneted query nodes, signi�antly more work is required to generalize the algorithm further,in partiular to handle the ommon situation in whih we require the onditional probability of allof the non-evidene nodes in the graph.Consider, for example, the graphial model shown in Figure 3.11, an important graph that wewill meet again in Chapter 12 and Chapter 15. Here we have a bakbone of unshaded nodes Xi forwhih we require the onditional probabilities, where we ondition on the shaded nodes Yi hangingo� the bakbone. Computing the onditional probability of any single node is a straightforwardappliation of Eliminate. Thus, for example, we an alulate p(x1 j y), where y = fy1; y2; : : : ; yng,by de�ning an elimination ordering in whih x1 is the �nal node. Similarly we an hoose anyintermediate node xi as the �nal node in an elimination ordering; for example, we an hoose anelimination ordering in whih the ow is forward from x1 to xi, and bakward from xn to xi.We an obviously alulate the onditionals by running the elimination algorithm n times,one for node xi. Clearly, however, this approah is ineÆient, requiring us to repeat the sameelimination steps many times. For example, in alulating p(x1 j y) and p(x2 j y), all of the stepsinvolved in marginalizing over x3; : : : ; xn would be repeated.It is not diÆult to �gure out how to avoid the redundant alulations in the ase of the graphin Figure 3.11, and indeed we will present various algorithms in Chapter 12 and Chapter 15 thatalulate all of the desired onditionals via a single forward and bakward pass along the hain.What we would like, however, is a general proedure for avoiding redundant omputation.We will make the step up to suh a general proedure in two steps. First, in Chapter 4, wedesribe the Sum-Produt algorithm, a proedure that allows the omputation of all singletonmarginals, but is restrited to trees. Seond, in Chapter 17, we put together what we have learnedfrom the elimination approah and the sum-produt algorithm, and desribe a general proedure|the juntion tree algorithm|that omputes marginals for general graphs. The key idea behindthe juntion tree algorithm is to avoid the multiple, di�erent elimination orderings that repeatedruns of elimination would require, in essene by developing a general data struture for ahing and



3.4. HISTORICAL REMARKS AND BIBLIOGRAPHY 21ombining intermediate fators. Rather than fousing on elimination orderings, the juntion treealgorithm fouses on the relationships between intermediate fators, or \messages." The same ideais present in simpler form in the Sum-Produt algorithm, to whih we now turn.3.4 Historial remarks and bibliography


