Date Lecture Readings Logistics
Module 1: Foundations of PGMs and Exact Inference
1/21 Lecture #1 (Prof. Lengerich):
Course Introduction, Introduction to PGMs
[ slides | notes ]

1/23 Lecture #2 (Prof. Lengerich):
Statistical Review & Maximum LIkelihood Estimation
[ slides | notes ]

HW1 Out

1/28 Lecture #3 (Prof. Lengerich):
A Linear view of Discriminative and Generative Models
[ slides | notes ]

1/30 Lecture #4 (Prof. Lengerich):
Conditional Independence and Directed GMs (BNs)
[ slides | notes ]
  • MI. Jordan, Chapter 2.1
  • Koller & Friedman, Chapter 3

HW2 Out

2/4 Lecture #5 (Prof. Lengerich):
Undirected GMs (MRFs)
[ slides | notes ]
  • MI. Jordan, Chapter 2.2
  • Koller & Friedman, Chapter 4

2/6 Lecture #6 (Prof. Lengerich):
Exact Inference 1 - Variable Elimination
[ slides | notes ]
  • MI. Jordan, Chapter 2.2
  • Koller & Friedman, Chapter 9

2/11 No class (skipped)
2/13 Quiz
Module 2: Learning
2/18 Lecture #7 (Prof. Lengerich):
Project Ideas + Learning Generalized Linear Models
[ slides | notes ]
  • MI. Jordan, Chapter 8, 9.1, 9.2

2/20 Lecture #8 (Prof. Lengerich):
Parameter Learning in Fully-Observed BNs
[ slides | notes ]
  • Koller & Friedman, Chapter 17.1-17.4

HW2 Out

2/25 Lecture #9 (Prof. Lengerich):
Learning Undirected GMs
[ slides | notes ]

2/27 Lecture #10 (Prof. Lengerich):
Structure Learning
[ slides | notes ]

3/4 Lecture #11 (Prof. Lengerich):
Causal Discovery
[ slides | notes ]

3/6 Lecture #12 (Prof. Lengerich):
Parameter Learning of partially observed BNs
[ slides | notes ]
  • MI. Jordan, Chapter 11
  • Koller & Friedman, Chapter 19.1-19.4

3/11 Lecture #13 (Prof. Lengerich):
Sequential Models
[ slides | notes ]
  • MI. Jordan, Chapter 15

3/13 Lecture #14 (Prof. Lengerich):
Variational Inference, Monte Carlo
[ slides | notes ]
  • MacKay, Chapter 29

3/18 Lecture #15 (Prof. Lengerich):
Review
[ slides | notes ]

3/20 Exam
3/25 No class (Spring recess)
3/27 No class (Spring recess)
Module 3: Modern Probabilistic AI
4/1 Lecture #16 (Prof. Lengerich):
Deep Learning from a GM Perspective
[ slides | notes ]

4/3 Lecture #17 (Prof. Lengerich):
CNNs, RNNs, Autoencoders
[ slides | notes ]

4/8 Lecture #18 :
Deep Generative Models: GAN, VAEs
[ slides | notes ]

4/10 Lecture #19 (Prof. Lengerich):
Attention and Transformers
[ slides | notes ]

4/15 Lecture #20 (Prof. Lengerich):
LLMs from a Probabilistic Perspective 1: Implementing a GPT from Scratch
[ slides | notes ]

4/17 Lecture #21 (Prof. Lengerich):
LLMs from a Probabilistic Perspective 2: Training on Unlabeled Data
[ slides | notes ]

4/22 Lecture #22 (Prof. Lengerich):
LLMs from a Probabilistic Perspective 3: Fine-tuning on Labeled Data
[ slides | notes ]

4/24 Lecture #23 (Prof. Lengerich):
Context-Adaptive Graphical Models
[ slides | notes ]

4/29 Project Presentations
5/1 Project Presentations